Весь опыт развития науки подтверждает, что познание нового всегда базируется на старом, уже приобретенном и осмысленном фактическом материале. Поэтому вполне естественно, что и объяснение ранее неизвестных фактов на первых порах удобнее всего построить на основе аналогии наблюдаемого явления с уже известным. Физические аналогии необходимы и полезны, когда нужно сравнить неизученную систему с системой более изученной [1]. Они не только дают возможность перенести освоенные методы анализа в неисследованные области, но и способствуют поиску ранее незнакомых физических процессов и явлений. Так, механические и акустические аналогии электронных процессов содействовали активному развитию электротехники и электродинамики, а первая капельная модель ядра Бора использовала понятия сил поверхностного натяжения обычных жидкостей. По мере накопления экспериментальных данных о новом явлении, первоначальный, построенный на простых аналогиях способ его теоретического описания, сменяется более совершенным, то есть более полно и точно описывающим свойства явления.
Особый интерес представляют аналогии механических, электродинамических, а также химических процессов, в которых проявляется определенная устойчивость, инертность рассматриваемых систем. Такая инертность (стабильность) физической либо физико-химической системы исключает “катастрофический” сценарий развития процессов в ней, что и является условием долговременного существования системы. Например, всякое механическое действие сопровождается противодействием; ускорение, приобретаемое телом под действием силы, обратно величине массы тела; индукционные токи в проводниках имеют направление, способствующее генерации магнитного поля, компенсирующего изменения внешнего магнитного поля (правило Ленца); луч света стремится в область повышенной плотности (показателя преломления) среды; химическая реакция протекает в направлении, ослабляющем действие факторов, нарушающих термодинамическое равновесие в системе (принцип Ле Шателье-Брауна) и др. Можно предположить, что и в физике гравитации действуют закономерности и макропроцессы, в чем-то аналогичные приводимым выше.
Знаете ли Вы, что такое "усталость света"? Усталость света, анг. tired light - это явление потери энергии квантом электромагнитного излучения при прохождении космических расстояний, то же самое, что эффект красного смещения спектра далеких галактик, обнаруженный Эдвином Хабблом в 1926 г. На самом деле кванты света, проходя миллиарды световых лет, отдают свою энергию эфиру, "пустому пространству", так как он является реальной физической средой - носителем электромагнитных колебаний с ненулевой вязкостью или трением, и, следовательно, колебания в этой среде должны затухать с расходом энергии на трение. Трение это чрезвычайно мало, а потому эффект "старения света" или "красное смещение Хаббла" обнаруживается лишь на межгалактических расстояниях. Таким образом, свет далеких звезд не суммируется со светом ближних. Далекие звезды становятся красными, а совсем далекие уходят в радиодиапазон и перестают быть видимыми вообще. Это реально наблюдаемое явление астрономии глубокого космоса. Подробнее читайте в FAQ по эфирной физике.