УДК 53.043
ФИЗИКА
Академик М.М. ЛАВРЕНТЬЕВ, И. Л. ЕГАНОВА, М. К. ЛУЦЕТ, С. Ф. ФОМИНЫХ
О ДИСТАНЦИОННОМ ВОЗДЕЙСТВИИ ЗВЕЗД НА РЕЗИСТОР
Одним из основных, принципиально важных результатов физических исследований известного советского астрофизика Н.А. Козырева [1—4] было предсказание и наблюдение факта дистанционного воздействия физического необратимого процесса на состояние физической системы (см. также работы [5,6]).
В нашем институте осуществлена специальная программа исследований возможности дистанционного воздействия звездных процессов на наземные датчики — резисторы на базе Крымской астрофизической обсерватории АН СССР. В предлагаемой статье излагаются основные результаты наблюдений, проведенных на 50-дюймовом рефлекторе обсерватории в октябре 1989 года.
Главной целью исследований было установление существование дистанционного воздействия звезды на физические характеристики резистора, находящегося в фокальной плоскости телескопа-рефлектора. Основой для такого заключения являются прямые измерения углового расстояния Да между истинным (фиксируемым резистором как чувствительным элементом приемной системы) и видимым положениями звезды по прямому восхождению а в момент прохождения через меридиан.
Теоретически величина Да может быть оценена по формуле (1) Аа = Аад-Аа, Да'; = 326/
где Да0 — рассматриваемое угловое расстояние, отнесенное к Солнцу, Да" — то же, в угловых секундах, Аа — годичная аберрация звезды для момента наблюдения по координате а, эт и да — тригонометрический параллакс звезды и ее собственное движение по а.
Формула (1) получена на основе общепринятых астрометрических соотношений и подробно обсуждается в работах [2, 3].
Нашей задачей было максимально близко к постановке и проведению наблюдений НЛ. Козырева усовершенствовать технику эксперимента: регистрирующую систему, выбор приемной системы, способ ее крепления в фокусе Несмита— Кассег-рэна и др., — в соответствии с требованиями физического эксперимента и, главное, с учетом известных особенностей исследуемого воздействия (см. [5, гл. 4]) . В противном случае возможны незаметные на первый взгляд, но существенные методические искажения эксперимента первооткрывателя.
Принципиальная схема экспериментальной установки и режим наблюдений детально обоснованы в [2] и изменены не были. Схематическое описание установки дано на рис. 1.
Рис. 1.5 — наблюдаемое изображение звезды после оптической системы телескопа;
1 — бронзовый кожух спектрометра; 2 — оптическое стекло; 3 - плотный картон; 4 — щель спектрографа, расположенная в фокальной плоскости телескопа перпендикулярно суточному движению, ширина щели 0,2 мм; 5 — зеркальная щечка щели; 6 — визирное устройство; 7 — приемная система: четырехплечный, одинарный, измерительный мост постоянного тока, построенный на сопротивлениях ОМЛТ-5,6 кОм—0,125 Вт, питающее напряжение 70—80 В; мост помещен в два плотно вставленных один в другой стакана: картонный и алюминиевый; 8 — чуствительный элемент приемной системы, расположенный непосредственно за щелью на расстоянии 5 мм от нее; 9 — провода связи; 10 - блоки питания, корректировки и регистрации. В качестве нулевого индикатора использовался гальванометр М—95, как в работе [2, 3] . или самописейЕпШт 621.01 в режиме работы "потенциометр"Ее работа была специально исследована в лабораторных условиях, имитирующих режим и условия астрофизических наблюдений. Отметим наиболее важные моменты.
1. В результате эффективной изоляции датчика с целью максимального уменьшения теплообмена и его стабилизации практически отсутствовал дрейф нулевого индикатора. Кроме того, при этом оказалось возможным увеличить величину питающего напряжения до 80 В, что увеличило чувствительность приемной системы.
Устранению шума на индикаторах способствовало общее заземление всех приборов, экранов проводов и самого телескопа на минус автономного источника питания.
2. При нарушении равновесия моста при изменении сопротивления одного из его плеч на 0,01 Ом (относительное изменение 2 ■ 10~
6) наблюдатель фиксирует на гальванометре отклонение на одно деление шкалы (0,02 мкА) . Установление показаний гальванометра происходит в течение 1 с, тогда как самописец на такое изменение реагирует практически мгновенно и на два деления диаграммной бумаги.3. Варьировались составные части экспериментальной установки: использовались многочисленные варианты измерительных мостов (20 шт.); использовались два способа крепления щели с датчиком в кожухе спектрографа: жесткий, изображенный на рис. 1, и подвесной, обеспечивающий полное отделение датчика от корпуса телескопа и удаление от него на 4—5 см, для чего была изготовлена специальная конструкция; измерения проводились независимо и с самописцем, и с гальванометрами.
4. Исследуемый датчик дистанционного регистрирует лабораторные необратимые процессы, например, испарение ацетона, растворение сахара в воде. Подчеркнем, что расположение процесса относительно датчика осуществлялось способами, исключающими известные воздействия процесса на датчик. Кроме того, исследуемый датчик был опробован на регистрации процессов метаболизма живых систем в
соответствующих условиях. Полученные положительные результаты представляют самостоятельный интерес и будут освещены в специальной статье.
При астрофизических наблюдениях реакция чувствительного элемента на процесс испарения ацетона использовалась для контроля за работоспособностью рабочего резистора. Было установлено, что через 30 мин после включения всей установки реакция на некоторый контрольный процесс составляет 4 деления у самописца, соответственно 2 деления у гальванометра. Через 1 ч после включения эта реакция увеличивается: до 6 делений у самописца и 3 делений у гальванометра и сохраняется на этом уровне в течение нескольких часов непрерывной работы. Затем работоспособность чувствительного элемента падает, поэтому или он, или полностью вся приемная система заменяется.
5. Определение реакций датчика на работу двигателей телескопа, на метеусловия позволило выбрать необходимый режим наблюдений и, принимая во внимание все особенности работы установки и процесса наблюдения, осуществить полный контроль за реакцией датчика. Перед наблюдением каждой звезды регулярно осуществлялась проверка чувствительности всех систем установки, проверка и коррекция работы телескопа, уточнялось местоположение щели и т.п.
Рис.
2. А, Б — сканирование в одном направлении, В - в противоположном. Цифры - данные микрометра гида. Видимому положению звезды соответствует 56.34Исследовалось дистанционное воздействие от звезд a Lyr на расстоянии 26,5 световых лет, /3 Peg - 217,3, /3 And — 75,8 и 6 And - 135,8 св. лет. Наблюдения звезды велись в момент верхней кульминации ± 5—10 мин. Использование самописца Endim позволило производить в течение этого времени неоднократное сканирование датчиком небесной сферы в окрестности видимого положения звезды по прямому восхождению а при зафиксированном склонении 6, равном склонению видимого положения звезды.
Наблюдения показали следующее.
1) Действительно, имеет место дистанционное воздействие звезды на резистор: показания нулевого индикатора фиксируют истинное положение звезды. Угловые расстояния До между истинным и видимым положениями звезды приведены в табл. Г. Даг — значение, вычисленное по формуле (1), где значения эт, да кАа (разность между средним и видимым, смещенным из-за аберрации, местом звезды)
определены по данным [7]; Да, — значение, полученное в эксперименте непосредственным измерением углового расстояния между местом, зафиксированным датчиком, и видимым местом звезды.
Возможные неточности в значениях параллаксов приведены по [8], так как в [7] данные о них отсутствуют.
ТАБЛИЦА 1
13 октября 1989 г.
В заключение авторы, пользуясь случаем, благодарят Н.В. Стешенко за предоставленную возможность проводить наблюдения на 50-дюймовом рефлекторе. В процессе работы нам помогли консультации и помощь в обеспечении работы телескопа со стороны В.А. Котова, Г.Е. Гершберга, М.В. Вороткова, Т.С. Галкиной, В.В. Прокофьевой, Н.С Черных, Л.Ф. Бежко, Ю.А. Горюнова, А.Н. Абраменко. Всем им авторы выражают искреннюю признательность.
Институт математики
Сибирского отделения Академии наук СССР
Новосибирск
ЛИТЕРАТУРА
1. Электромагнитная волна (в религиозной терминологии релятивизма - "свет") имеет строго постоянную скорость 300 тыс.км/с, абсурдно не отсчитываемую ни от чего. Реально ЭМ-волны имеют разную скорость в веществе (например, ~200 тыс км/с в стекле и ~3 млн. км/с в поверхностных слоях металлов, разную скорость в эфире (см. статью "Температура эфира и красные смещения"), разную скорость для разных частот (см. статью "О скорости ЭМ-волн")
2. В релятивизме "свет" есть мифическое явление само по себе, а не физическая волна, являющаяся волнением определенной физической среды. Релятивистский "свет" - это волнение ничего в ничем. У него нет среды-носителя колебаний.
3. В релятивизме возможны манипуляции со временем (замедление), поэтому там нарушаются основополагающие для любой науки принцип причинности и принцип строгой логичности. В релятивизме при скорости света время останавливается (поэтому в нем абсурдно говорить о частоте фотона). В релятивизме возможны такие насилия над разумом, как утверждение о взаимном превышении возраста близнецов, движущихся с субсветовой скоростью, и прочие издевательства над логикой, присущие любой религии.
4. В гравитационном релятивизме (ОТО) вопреки наблюдаемым фактам утверждается об угловом отклонении ЭМ-волн в пустом пространстве под действием гравитации. Однако астрономам известно, что свет от затменных двойных звезд не подвержен такому отклонению, а те "подтверждающие теорию Эйнштейна факты", которые якобы наблюдались А. Эддингтоном в 1919 году в отношении Солнца, являются фальсификацией. Подробнее читайте в FAQ по эфирной физике.