Кривая Гильберта

Следующая программа вычерчивает в диалоговом окне кривую Гильберта. На рис. 12.7 приведены кривые Гильберта первого, второго и третьего порядков. Если присмотреться, то видно, что кривая второго порядка получается путем соединения прямыми линиями четырех кривых первого порядка. Аналогичным образом получается кривая третьего порядка, но при этом в качестве "кирпичиков" используются кривые второго порядка. Таким образом, чтобы нарисовать кривую третьего порядка, надо нарисовать четыре кривых второго порядка. В свою очередь, чтобы нарисовать кривую второго порядка, надо нарисовать четыре кривых первого порядка. Таким образом, алгоритм вычерчивания кривой Гильберта является рекурсивным.

Диалоговое окно программы Кривая Гильберта, в котором находится кривая пятого порядка, приведено на рис. 12.8, текст программы — в листинге 12.4.

 

Рис. 12.7. Кривые Гильберта первого, второго и третьего порядков

Рис. 12.8. Кривая Гильберта пятого порядка

Листинг 12.4. Кривая Гильберта

unit gilbert_;

interface

uses

Windows, Messages, SysUtils,

Variants, Classes, Graphics,

Controls, Forms, Dialogs, StdCtrls, ComCtrls;

type

TForml = class(TForm)

procedure FormPaint(Sender: TObject);

private

{ Private declarations }

public

{ Public declarations }

end;

var

Form1: TForm1;

implementation {$R *.dfm}

var

p: integer =5; // порядок кривой

u: integer =7; // длина штриха

{ Кривую Гильберта можно получить путем

соединения элементов а,b,с и d.

Каждый элемент строит

соответствующая процедура. }

procedure a(i:integer; canvas: TCanvas); forward;

procedure b(i:integer; canvas: TCanvas); forward;

procedure с(i:integer; canvas: TCanvas); forward;

procedure d(i:integer; canvas: TCanvas); forward;

// Элементы кривой

procedure a(i: integer; canvas: TCanvas);

begin

if i > 0 then begin

d(i-l, canvas);

canvas.LineTo(canvas.PenPos.X+u,canvas.PenPos.Y);

a(i-l, canvas);

canvas.LineTo(canvas.PenPos.X,canvas.PenPos.Y+u);

a(i-l, canvas);

canvas.LineTo(canvas.PenPos.X-u,canvas.PenPos.Y);

с (i-1, canvas);

end;

end;

procedure b(i: integer; canvas: TCanvas);

begin

if i > 0 then begin

c(i-l, canvas);

canvas.LineTo(canvas.PenPos.X-u,canvas.PenPos.Y);

b(i-1, canvas);

canvas.LineTo(canvas.PenPos.X,canvas.PenPos.Y-u);

b(i-l, canvas);

canvas.LineTo(canvas.PenPos.X+u, canvas.PenPos.Y);

d(i-l, canvas);

end;

end;

procedure c(i: integer; canvas: TCanvas);

begin

if i > 0 then begin

b(i-1, canvas);

canvas.LineTo(canvas.PenPos.X,canvas.PenPos.Y-u);

с (i-1, canvas);

canvas.LineTo(canvas.PenPos.X-u,canvas.PenPos.Y);

c(i-1, canvas);

canvas.LineTo(canvas.PenPos.X,canvas.PenPos.Y+u);

a(i-1, canvas);

end;

end;

procedure d(i: integer; canvas: TCanvas);

begin

if i > 0 then begin

a(i-1, canvas);

canvas.LineTo(canvas.PenPos.X,canvas.PenPos.Y+u);

d(i-1, canvas);

canvas.LineTo(canvas.PenPos.X+u,canvas.PenPos. Y) ;

d(i-1, canvas);

canvas.LineTo(canvas.PenPos.X,canvas.PenPos.Y-u);

b(i-1, canvas);

end;

end;

procedure TForml.FormPaint(Sender: TObject);

begin

Form1.Canvas.MoveTo(u, u) ;

a(5,Form1.Canvas); // вычертить кривую Гильберта

end;

end.

Следует обратить внимание на следующую особенность реализации программы. Процедура, которая вычерчивает элемент а, помимо самой себя (для вычерчивания элемента а кривой более низкого порядка) вызывает процедуры d и ь, описание (текст) которых в тексте программы находится после процедуры а. Чтобы компилятор не вывел сообщение об ошибке, в текст программы помещено объявление процедуры с ключевым словом forward, означающим, что это только объявление, а описание (реализация) находится дальше. Таким образом, уже в процессе компиляции процедуры а, компилятор "знает", что имена ь и d означают процедуры.

 


Знаете ли Вы, почему "черные дыры" - фикция?
Согласно релятивистской мифологии, "чёрная дыра - это область в пространстве-времени, гравитационное притяжение которой настолько велико, что покинуть её не могут даже объекты, движущиеся со скоростью света (в том числе и кванты самого света). Граница этой области называется горизонтом событий, а её характерный размер - гравитационным радиусом. В простейшем случае сферически симметричной чёрной дыры он равен радиусу Шварцшильда".
На самом деле миф о черных дырах есть порождение мифа о фотоне - пушечном ядре. Этот миф родился еще в античные времена. Математическое развитие он получил в трудах Исаака Ньютона в виде корпускулярной теории света. Корпускуле света приписывалась масса. Из этого следовало, что при высоких ускорениях свободного падения возможен поворот траектории луча света вспять, по параболе, как это происходит с пушечным ядром в гравитационном поле Земли.
Отсюда родились сказки о "радиусе Шварцшильда", "черных дырах Хокинга" и прочих безудержных фантазиях пропагандистов релятивизма.
Впрочем, эти сказки несколько древнее. В 1795 году математик Пьер Симон Лаплас писал:
"Если бы диаметр светящейся звезды с той же плотностью, что и Земля, в 250 раз превосходил бы диаметр Солнца, то вследствие притяжения звезды ни один из испущенных ею лучей не смог бы дойти до нас; следовательно, не исключено, что самые большие из светящихся тел по этой причине являются невидимыми." [цитата по Брагинский В.Б., Полнарёв А. Г. Удивительная гравитация. - М., Наука, 1985]
Однако, как выяснилось в 20-м веке, фотон не обладает массой и не может взаимодействовать с гравитационным полем как весомое вещество. Фотон - это квантованная электромагнитная волна, то есть даже не объект, а процесс. А процессы не могут иметь веса, так как они не являются вещественными объектами. Это всего-лишь движение некоторой среды. (сравните с аналогами: движение воды, движение воздуха, колебания почвы). Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
Bourabai Research - Технологии XXI века Bourabai Research Institution