![]() |
![]() |
![]() |
Построение гистограммГистограммой называется график, аппроксимирующий по случайным данным плотность их распределения. При построении гистограммы область значений случайной величины (а,b> разбивается на некоторое количество bin сегментов, а затем подсчитывается процент попадания данных в каждый сегмент. Для построения гистограмм в Mathcad имеется несколько встроенных функций. Рассмотрим их, начиная с самой сложной по применению, чтобы лучше разобраться в возможностях каждой из функций. Гистограмма с произвольными сегментами разбиения
Если вектор intvis имеет bin элементов, то и результат hist имеет столько же элементов. Построение гистограммы иллюстрируется листингом 14.8 и рис. 14.9. Листинг 14.8. Построение гистограммы Для анализа взято N=1000 данных с нормальным законом распределения, созданных генератором случайных чисел (третья строка листинга). Далее определяются границы интервала (upper,lower), содержащего внутри себя все случайные значения, и осуществляется его разбиение на количество (bin) одинаковых сегментов, начальные точки которых записываются в вектор int (предпоследняя строка листинга). В векторе int можно задать произвольные границы сегментов разбиения так, чтобы они имели разную ширину. Рис. 14.9. Построение гистограммы (листинг 14.8) Обратите внимание, что в последней строке листинга осуществлена нормировка значений гистограммы, с тем чтобы она правильно аппроксимировала плотность вероятности, также показанную на графике. Очень важно переопределение вектора int в самом верху рис. 14.9, которое необходимо для перехода от левой границы каждого элементарного сегмента к его центру. Гистограмма с разбиением на равные сегменты Если нет необходимости задавать сегменты гистограммы разной ширины, то удобнее воспользоваться упрощенным вариантом функции hist.
Для того чтобы использовать этот вариант функции hist вместо предыдущего, достаточно заменить первый из ее аргументов в листинге 14.8 следующим образом: Недостаток упрощенной формы функции hist в том, что по-прежнему необходимо дополнительно определять вектор сегментов построения гистограммы. От этого недостатка свободна появившаяся в Mathcad 2001 функция histogram.
Примеры использования функции histogram приведены в листинге 14.9 и рис. 14.10. Сравнение с предыдущим листингом подчеркивает простоту построения гистограммы этим способом (стоит отметить, что в листинге 14.9, в отличие от предыдущего, мы не нормировали гистограмму). Рис. 14.10. График и матрица гистограммы (листинг 14.9) Создание графика гистограммы Для того чтобы создать график в виде гистограммы:
Рис. 14.11. Установка типа графика для построения гистограммы
На рис. 14.9 и 14.10 были применены установки графика bar (столбцы). В Mathcad 2001 появилась новая возможность построения гистограммы в более привычном виде — закрашенными столбиками (solidbar). Такой тип графика иллюстрируется рис. 14.11. |
![]() |
![]() |
![]() |
Релятивисты и позитивисты утверждают, что "мысленный эксперимент" весьма полезный интрумент для проверки теорий (также возникающих в нашем уме) на непротиворечивость. В этом они обманывают людей, так как любая проверка может осуществляться только независимым от объекта проверки источником. Сам заявитель гипотезы не может быть проверкой своего же заявления, так как причина самого этого заявления есть отсутствие видимых для заявителя противоречий в заявлении.
Это мы видим на примере СТО и ОТО, превратившихся в своеобразный вид религии, управляющей наукой и общественным мнением. Никакое количество фактов, противоречащих им, не может преодолеть формулу Эйнштейна: "Если факт не соответствует теории - измените факт" (В другом варианте " - Факт не соответствует теории? - Тем хуже для факта").
Максимально, на что может претендовать "мысленный эксперимент" - это только на внутреннюю непротиворечивость гипотезы в рамках собственной, часто отнюдь не истинной логики заявителя. Соответсвие практике это не проверяет. Настоящая проверка может состояться только в действительном физическом эксперименте.
Эксперимент на то и эксперимент, что он есть не изощрение мысли, а проверка мысли. Непротиворечивая внутри себя мысль не может сама себя проверить. Это доказано Куртом Гёделем.
Понятие "мысленный эксперимент" придумано специально спекулянтами - релятивистами для шулерской подмены реальной проверки мысли на практике (эксперимента) своим "честным словом". Подробнее читайте в FAQ по эфирной физике.
|
![]() |