к оглавлению

Вводный курс компьютерной графики

Печатающие устройства

    0.5.1  Разрешение устройств
    0.5.2  Матричный принтер
    0.5.3  Струйная печать
    0.5.4  Лазерный принтер
    0.5.5  Принтеры на твердых красителях

Обычное печатающее устройство помещает отдельные символы друг возле друга на бумагу, как, например, пишущая машинка. Зачастую поэтому говорят также последовательной (посимвольной) печати. В отличие от этого печатающее устройство типографского типа во время процесса печати выдает на бумагу по определенному правилу всю строку (или даже лист) целиком и поэтому может называться параллельным печатающим устройством. Такое устройство требует средств промежуточного хранения для накопления полной строки (листа). В частности, при печати офсетным методом таким средством промежуточного хранения является так называемая фотоформа - алюминиевый лист с вытравленным образом печатаемого листа.

С точки зрения процесса переноса цветов на бумагу устройства печати можно разделить на механические и немеханические. На рис. 0.5.1-0.5.2 приведена классификация механических и немеханических методов документирования. На рис. 0.5.3 приведена классификация, детализирующая различные методы отображения текстов.


Рисунок 12

Рис. 0.5.1: Классификация механических методов печати


Рисунок 13

Рис. 0.5.2: Классификация немеханических методов печати


Рисунок 14

Рис. 0.5.3: Классификация методов печати текстов

Посимвольно-ориентированные методы гарантируют высокое качество текста, но для графического представления они вряд ли применимы. Растрово-ориентированные методы подходят также и для графического вывода.

0.5.1  Разрешение устройств

Важнейшей характеристикой растровых устройств, формирующих изображение из отдельных точек, является пространственное разрешение. Оно в первую очередь определяется размером элементарного пятна, а также возможностями размещения пятен. Так как обычно растровое пятно представляет собой некоторую область с убыванием интенсивности от центра к краям, то для различимости отдельных пятен необходимо не слишком большое их перекрытие. На рис. 0.5.4 показаны случаи различимости и неразличимости отдельных пятен. Если пересечение пятен ниже уровня » 0.6 от максимальной интенсивности, то пятна различимы (см. рис. 0.5.4а). Если же пересечение пятен выше уровня 0.6, то пятна неразличимы (см. рис. 0.5.4б). Это обстоятельство используется для повышения качества печати (степени гладкости) на растровых принтерах за счет частичного наложения пятен.


Рисунок 15

Рис. 0.5.4: Физическое разрешение растровой печати

Другими факторами, определяющими разрешающую способность, являются:
· форма пятна (круглое, эллипсоидальное или иное);
· распределение яркости по пятну (по гауссу или иное).

Кроме пространственного разрешения существенной характеристикой устройств документирования является адресное разрешение, т.е. точность с которой может задаваться позиция. Как правило, адресное разрешение превышает пространственное или во всяком случае не меньше последнего.

Адресное разрешение определяет размер памяти, требуемый для хранения отображаемого растрового образа, а также возможности по устранению ступенчатости изображения.

0.5.2  Матричный принтер

Широко распространенным устройством является матричный принтер. Он позволяет довольно качественно выводить текст и формировать графические изображения в основном для вспомогательных целей.

Основной элемент матричного принтера - печатающая головка, содержащая от 7 до 48 вертикально расположенных штырьков (игл), с шишечкой, выталкиваемых электромагнитами до соударения с красящей лентой. Принцип работы одной иголки матричного принтера показан на рис. 0.5.5а). Наиболее распространены 9 и 24-х игольчатые принтеры. Важной характеристикой принтера является разрешение, определяемое диаметром иглы. Обычные значения - десятые доли миллиметра (до 3-5 точек/мм, т.е. 85-127 точек/дюйм). Адресное разрешение по оси Y определяется расстоянием между иглами (Dh на рис. 0.5.5б)) и составляет до 170 точек/дюйм. Наиболее современные 48-игольчатые матричные принтеры имеют разрешение приближающееся в 300 точкам/дюйм.


Рисунок 16


Рисунок 17

Рис. 0.5.5: Схема устройства печатающей головки матричного принтера

В одноцветных принтерах красящая лента свернута в кольцо Мебиуса, так что обеспечивается использование ленты с двух сторон. Цветные принтеры, в зависимости от используемой бумаги, работают в один или несколько проходов. Если возможно использование обычной бумаги, то все цвета печатаются в каждой строке, прежде чем произойдет перемещение к следующей. Цвет переключается механически вертикальным смещением красящей ленты. В более скоростных (и дорогостоящих) цветных принтерах, использующих специальную толстую перфорированную бумагу, лента состоит из трех частей: красной, желто-зеленой и синей. Печать происходит постранично в три прохода.

Забота о неналожении точек различных цветов друг на друга возлагается на пользователя. При повторной печати точки другим цветом краситель с бумаги частично переносится на ленту, поэтому ленты быстро мажутся, особенно, светлых оттенков.

Обычно принтеры имеют несколько комплектов внутренних шрифтов и память для загрузки шрифтов, созданных пользователем. В хороших принтерах оба хода головки рабочие и слева-направо и справа-налево.

Как правило, принтеры имеют встроенную память для накопления распечатываемого текста (до нескольких десятков страниц).

Обычно имеется два режима работы - символьный и графический. В символьном режиме принтер, используя внутреннее растровое описание шрифтов, сам управляет печатью строк. В графическом режиме пользователь должен сам подготовить поточечное описание строк.

Скорости печати в символьном режиме порядка первых сотен символов в секунду (120, 120-200, более 200). Скорости печати строк в минуту также первые сотни (до 200, 200-400, более 400).

Лидеры на рынке матричных принтеров - фирмы Epson и NEC (Nippon Electric Company).

В наименовании высококачественных принтеров обычно имеются буквы, определяющие наивысшее качество печати:

NLQ - Near Letter Quality - качество, близкое к качеству пишущей машинки;
LQ - Letter Quality - качество пишущей машинки. В 9-ти игольчатых принтерах обычно реализуется NLQ, а в 24-х игольчатых - LQ.

Протокол матричного принтера

Стандартами де-факто для знакосинтезирующих принтеров стали три системы команд:

· система команд фирмы Epson;

· система команд фирмы IBM для семейства принтеров Proprinter;

· система команд фирмы IBM для графического принтера (IBM Graphics printer).

0.5.3  Струйная печать

Цветная струйная печать хорошо подходит для использования в деловой графике. Набор сопел для чернил размещается в головке печати, с, по крайней, мере одним соплом на один субтрактивный цвет. Нынешние модели базируются на технологиях: "капля по запросу", "пузырьковой технологии струйной печати" и "Micro Piezo, Micro Dot, Micro Wave".

Принцип действия струйной печати пояснен на рис. 0.5.6. Цилиндрический пьезоэлектрический кристалл плотно надет на резиновую трубку, заканчивающуюся соплом. При подаче напряжения на кристалл трубка обжимается и выбрасывает каплю чернил в сопло. Дроссель служит для того, чтобы при обжатии трубки чернила выбрасывались только в сопло, а не в резервуар с чернилами. Частота работы сопел составляет до 900 герц.


Рисунок 18

Рис. 0.5.6: Схема устройства отдельного сопла в струйном принтере

Количество сопел одного цвета, требуемое разрешением и скоростью печати, вертикально размещается в печатающей головке. Для цветной печати обычно используется три цвета - желтый, голубой, малиновый. Часто добавляется дополнительный черный цвет.

Обычная разрешающая способность по горизонтали до 150 точек на дюйм (6 точек/мм) по горизонтали и до 100 точек на дюйм по вертикали (4 точки/мм). Достижения современной технологии изготовления головок позволяют разместить до 50 сопел на 1/6 дюйма, чем обеспечивается вертикальное разрешение до 300 точек на дюйм (12 точек/мм).

Суммарная скорость печати в целом невысока - от 20 до 50 символов в секунду и порядка 90 секунд на лист формата А4 в графическом режиме.

Достоинством устройств струйной печати является малое энергопотребление и практически бесшумная работа.

В струйных черно/белых принтерах фирмы HP используется и другой способ формирования капелек, показанный на рис. 0.5.7. На изолирующую подложку нанесены токоподводящие проводники. На небольшом расстоянии от подложки находится пленка с отверстиями сопел. Напротив каждого сопла в разрыве токоподводящего проводника размещена высокоомная площадка. Между подложкой и пленкой с соплами образован капилляр для подвода специальных чернил. При пропускании импульса тока около 1 А высокоомная площадка быстро разогревается, под действием теплового удара формируется волна, выбрасывающая капельку чернил из сопла.


Рисунок 19

Рис. 0.5.7: Схема образования капель в струйном принтере фирмы HP

Фирма Seiko Epson Corporation разработала новую технологию струйной печати (Micro Piezo, Micro Dot и Micro Wave), отличтительным свойством которой является управление мениском чернил в сопле. Технология позволяет управлять размером и формой чернильных пятен, повысить скорость выстреливания капель, увеличить количество оттенков до шести, включая полутона, и устранить зернистость. Технология позволяет получить разрешение до 1440 точек на дюйм ( » 57 точек на мм). Принцип работы струйных принтеров, использующих новую технологию, представлен на рис. 0.5.8. На рис. 0.5.9 показаны результаты печати по технологиям Micro Dot и традиционной.


Рисунок 20

Рис. 0.5.8: Управление формой и полетом капель в новых принтерах Stylus


Рисунок 21

Рис. 0.5.9: Струйная печать по технологиям Micro Dot и традиционной

Протокол устройств струйной печати

Стандартом де-факто для струйных принтеров является протокол принтеров фирмы Epson, ряд принтеров эмулирует язык HPGL, разработанный фирмой Хьюлетт-Паккрад для графопостроителей.

0.5.4  Лазерный принтер

Лазерные принтеры используют ксерографический (электрофотографический) метод печати, который также применяется в большинстве аппаратов копирования. В целом лазерный принтер - монохромное устройство. В настоящее время имеются и цветные лазерные принтеры, по сути представляющие собой конструктивное объединение нескольких лазерных принтеров.

Черно-белый лазерный принтер

Схема устройства монохромного лазерного принтера показана на рис. 0.5.10. Слой фоточувствительного селена, нанесенный на алюминиевый барабан, в темном боксе аппарата получает равномерный положительный поверхностный заряд с помощью коронного разряда. Этот фоточувствительный слой является изолятором в темноте и полупроводником при освещении. Заряженный слой облучается источником света с целью создания на нем скрытого изображения в виде распределения заряда. Скрытое изображение делается видимым с помощью мелкодисперсного порошка положительного тонера. Синхронно с вращением барабана перемещается обычная бумага. Частички тонера под действием электростатического поля переносятся на бумагу. Полученное изображение фиксируется термическим способом. Перед следующим заряжанием фоточувствительный слой очищается от оставшихся частиц тонера и разряжается.


Рисунок 22

Рис. 0.5.10: Схема устройства черно-белого лазерного принтера

Картинка формируется лазерным лучом на фоточувствительном слое в виде узора точек. Типовая разрешающая способность современных лазерных принтеров 600 точек/дюйм (24 точки/мм, точнее 23.6 точек/мм). Это обеспечивает очень высокое качество для текста и любой графики. Трудности возникают лишь при выводе больших черных поверхностей. В современных принтерах плотность печати доведена до 1200 точек/дюйм, что превышает качество типографской печати. Органичение в разрешающей способности в обычных лазерных принтерах с одним отклоняющимся лучом связано с различной формой пятна в центре барабана (круг) и на краях (эллипс) (рис .0.5.11).


Рисунок 23

Рис. 0.5.11: Изменение формы пятна в лазерном принтере

Лазерный принтер - постраничное устройство. Максимальная скорость составляет порядка 150 страниц в минуту.

Цветной лазерный принтер

Схема устройства цветного лазерного принтера показана на рис. 0.5.12. Как видно из рисунка цветной лазерный принтер подобен черно-белому.

Для печати за один проход по бумаге используются гибкая светочувствительная лента, покрытая слоем селена, и лента переноса, на которой формируются изображения для всех четырех цветов.

Изображение, сформированное на ленте переноса, переносится на бумагу и затем закрепляется нагреванием.


Рисунок 24

Рис. 0.5.12: Схема устройства цветного лазерного принтера

Протоколы лазерных принтеров

Стандартом де-факто для лазерных принтеров является система команд PCL (язык команд принтера) лазерных принтеров HP LaserJet Plus фирмы Hewlett Paccard.

Широкое распространение получают различные языки описания страниц (PDL - Page Description Language). Каждый язык описания страниц - это "настоящий" язык программирования, с переменными, подпрограммами, операторами, управляющими структурами. Языки включают графические операции, обеспечивающие создание изображений, и каждый имеет возможности по работе со шрифтами. Наиболее развитыми PDL являются Interpress фирмы Xerox, DDL фирмы Imagen, PostScript фирмы Adobe. Хотя эти языки и очень похожи, стандартом де-факто стал язык PostScript.

Основные отличия, с точки зрения подготовки шрифтов, между PCL и PostScript состоят в том, что шрифты в PCL готовятся в виде битовой карты, поэтому для разных масштабов нужны различные версии одного и того же шрифта. В языке же PostScript описание шрифта - схема его символов, изменяемая программным путем, поэтому легко реализуются не только различные масштабы, но печать по различным направлениям, например, вдоль контура фигуры, изменение наклона букв и т.д.

Многие лазерные принтеры имеют как систему команд PCL, так и аппаратные интерпретаторы PostScript. В целом данные для печати в PCL во много раз короче, чем данные, представленные в PostScript, соответственно несравненно меньше и время передачи данных на принтер. Особенно эти проблемы заметны при программной обработке, например, на принтер, поддерживающий только PostScript, выдаются данные из системы TeX для авторской подготовки статей. Зачастую при этом менее 10 Кбайт текста преобразуется более чем в 100 Кбайт данных на языке PostScript.

Основная область использования PostScript - настольные издательские системы. Такого сорта системы, без его использования требуют подготовки нескольких сотен шрифтов.

0.5.5  Принтеры на твердых красителях

Цветной лазерный принтер по сути представляет собой конструктивно объединенные четыре монохромных принтера, работающие последовательно. Для большинства цветных лазерных принтеров скорость черно-белой (монохромной) печати в четыре раза превышает скорость цветной печати.

В отличие от цветных лазерных принтеров, принтеры на твердых красителях (solid ink printers) исходно разрабатывались как цветные устройства. Перед началом работы твердые красители расплавляются нагревательным элементом и готовы к работе в течение рабочего дня (рис. 0.5.13).


Рисунок 25

Рис. 0.5.13: Схема устройства принтера на твердых красителях

Расплавленные красители поступают в печатающую головку, обеспечивающую плотность печати 1200 точек/дюйм (47 точек/мм) по горизонтали и 600 точек/дюйм (24 точки/мм) по вертикали. Скорость печати - 6 страниц/мин в обычном режиме, до 10 страниц/мин в быстром режиме и 5 страниц/мин при печати прозрачных слайдов. Важно отметить, что время начала печати первой страницы составляет менее 0.1 с против » 1 c для цветных лазерных принтеров. Это связано с тем, что в лазерном принтере должен нагреваться ролик для закрепления изображения.

Существенными преимуществами принтеров на твердых красителях являются простота смены красителей - стержни красителей добавляются по мере надобности, малое количество (две) типов расходуемых компонент, против 5-12 для цветных лазерных принтеров и возможность работы с высоким качеством цветопередачи на самых различных носителях, в том числе и на обычных слайдах для слайд-проекторов.

В лаборатории фирмы Тектроникс, разработавшей эти принтеры, достигнута скорость печати до 100 страниц/мин. На рис. 0.5.14 показан внешний вид принтера Phaser 840, выпускаемого фирмой Тектроникс.


Рисунок 26

Рис. 0.5.14: Принтер Phaser 840 на твердых красителях

Протоколы принтеров на твердых красителях

Рассмотренными принтерами поддерживаются языки описания страниц Adobe Postscript Level 2, HPGL, HCL-5.

к оглавлению

Знаете ли Вы, в чем ложность понятия "физический вакуум"?

Физический вакуум - понятие релятивистской квантовой физики, под ним там понимают низшее (основное) энергетическое состояние квантованного поля, обладающее нулевыми импульсом, моментом импульса и другими квантовыми числами. Физическим вакуумом релятивистские теоретики называют полностью лишённое вещества пространство, заполненное неизмеряемым, а значит, лишь воображаемым полем. Такое состояние по мнению релятивистов не является абсолютной пустотой, но пространством, заполненным некими фантомными (виртуальными) частицами. Релятивистская квантовая теория поля утверждает, что, в согласии с принципом неопределённости Гейзенберга, в физическом вакууме постоянно рождаются и исчезают виртуальные, то есть кажущиеся (кому кажущиеся?), частицы: происходят так называемые нулевые колебания полей. Виртуальные частицы физического вакуума, а следовательно, он сам, по определению не имеют системы отсчета, так как в противном случае нарушался бы принцип относительности Эйнштейна, на котором основывается теория относительности (то есть стала бы возможной абсолютная система измерения с отсчетом от частиц физического вакуума, что в свою очередь однозначно опровергло бы принцип относительности, на котором постороена СТО). Таким образом, физический вакуум и его частицы не есть элементы физического мира, но лишь элементы теории относительности, которые существуют не в реальном мире, но лишь в релятивистских формулах, нарушая при этом принцип причинности (возникают и исчезают беспричинно), принцип объективности (виртуальные частицы можно считать в зависимсоти от желания теоретика либо существующими, либо не существующими), принцип фактической измеримости (не наблюдаемы, не имеют своей ИСО).

Когда тот или иной физик использует понятие "физический вакуум", он либо не понимает абсурдности этого термина, либо лукавит, являясь скрытым или явным приверженцем релятивистской идеологии.

Понять абсурдность этого понятия легче всего обратившись к истокам его возникновения. Рождено оно было Полем Дираком в 1930-х, когда стало ясно, что отрицание эфира в чистом виде, как это делал великий математик, но посредственный физик Анри Пуанкаре, уже нельзя. Слишком много фактов противоречит этому.

Для защиты релятивизма Поль Дирак ввел афизическое и алогичное понятие отрицательной энергии, а затем и существование "моря" двух компенсирующих друг друга энергий в вакууме - положительной и отрицательной, а также "моря" компенсирующих друг друга частиц - виртуальных (то есть кажущихся) электронов и позитронов в вакууме.

Однако такая постановка является внутренне противоречивой (виртуальные частицы ненаблюдаемы и их по произволу можно считать в одном случае отсутствующими, а в другом - присутствующими) и противоречащей релятивизму (то есть отрицанию эфира, так как при наличии таких частиц в вакууме релятивизм уже просто невозможен). Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
Bourabai Research - Технологии XXI века Bourabai Research Institution