к оглавлению

Основные алгоритмы компьютерной графики

ОТСЕЧЕНИЕ МНОГОУГОЛЬНИКА

    0.7.1  Алгоритм Сазерленда-Ходгмана
    0.7.2  Простой алгоритм отсечения многоугольника
    0.7.3  Алгоритм отсечения многоугольника Вейлера-Азертона

Многоугольники особенно важны в растровой графике как средство задания поверхностей.

Будем называть многоугольник, используемый в качестве окна отсечения, отсекателем, а многоугольник, который отсекается, - отсекаемым.

Алгоритм отсечения многоугольника должен в результате отсечения давать один или несколько замкнутых многоугольников (рис. 0.3.20). При этом могут быть добавлены новые ребра, а имеющиеся или сохранены или разделены или даже отброшены. Существенно, чтобы границы окна, которые не ограничивают видимую часть отсекаемого многоугольника, не входили в состав результата отсечения. Если это не выполняется, то возможна излишняя закраска границ окна (см. рис. 0.3.20б).


Рисунок 52

Рис. 0.3.18: Отсечение окном PQRS многоугольников ABCDEFGHIJ и KLMN

В принципе эту задачу можно решить с использованием рассмотренных выше алгоритмов отсечения линий, если рассматривать многоугольник просто как набор векторов, а не как сплошные закрашиваемые области. При этом вектора, составляющие многоугольник, просто последовательно отсекаются сторонами окна (рис. 0.3.21).


Рисунок 53

Рис. 0.3.19: Отсечение окном PQRS многоугольника ABCD, рассматриваемого как набор векторов. Генерируется вывод из двух векторов BsCs и DsAs.

Если же в результате отсечения должен быть получен замкнутый многоугольник, то формируется вектор, соединяющий последнюю видимую точку с точкой пересечения с окном (рис. 0.3.22а). Проблема возникает при окружении отсекаемым многоугольником угла окна (см. рис. 0.3.22б).


Рисунок 54

Рис. 0.3.20: Отсечение сплошного многоугольника окном.

Здесь мы рассмотрим три алгоритма корректно решающие задачу отсечения сплошного многоугольника. Первые два алгоритма быстро работают, но генерируют лишние ребра, как это продемонстрировано на рис. 0.3.20б. Последний алгоритм свободен от указанного недостатка.

В общем, при отсечении многоугольников возникают два типа задач - отображение части изображения попавшей в окно и наоборот, отображение изображения, находящегося вне окна. Все здесь рассматриваемые алгоритмы могут использоваться в обоих случаях.

0.7.1  Алгоритм Сазерленда-Ходгмана

Простой метод решения проблемы охвата отсекаемым многоугольником вершины окна предлагается в алгоритме Сазерленда-Хогдмана [40], когда весь многоугольник последовательно отсекается каждой границей окна, как это показано на рис. 0.3.23.


Рисунок 55

Рис. 0.3.21: Последовательное отсечение многоугольника сторонами окна.

При отсечении ребра, соединяющего очередную пару вершин K и L, возможны 4 случая взаимного расположения (рис. 0.3.24):

а) ребро на внутренней стороне границы,

б) ребро выходит из окна наружу,

в) ребро на внешней стороне границы,

г) ребро входит снаружи в окно.


Рисунок 56

Рис. 0.3.22: Относительные расположения ребра и границы окна.

В случае а) в результат добавляется вершина L. В случае б) в результат заносится S - точка пересечения ребра с границей. В случае в) нет вывода. В случае г) выдаются точка пересечения S и конечная точка ребра L.

Для определения взаимного расположения и направленности используется векторное произведение вектора P1P2, проведенного из начальной в конечную точку текущего ребра окна, на вектор P1S из начальной точки текущего ребра окна в очередную вершину S многоугольника (рис. 0.3.25).


Рисунок 57

Если P1P2 ×P1S < 0, то поворот от P1P2     к    P1S по часовой стрелке, т.е. точка S внутри окна.
Если P1P2 ×P1S > 0, то поворот от P1P2     к    P1S против часовой стрелки, т.е. точка S вне окна.

Рис. 0.3.23: Определение взаимного расположения окна и вершины

Предложена аппаратная реализация этого алгоритма, состоящая из четырех идентичных ступеней отсечения без промежуточной памяти [28].

В алгоритме Сазерленда-Ходгмана в результат могут заноситься границы окна, даже если они и не ограничивают видимую часть отсеченного многоугольника. Это можно устранить дополнительным анализом, либо используя более сложный алгоритм отсечения.

0.7.2  Простой алгоритм отсечения многоугольника

В данном разделе рассматривается простой алгоритм отсечения, который подобно алгоритму Сазерленда-Ходгмана может генерировать лишние стороны для отсеченного многоугольника, проходящие вдоль ребра окна отсечения. Но этот алгоритм несколько более быстрый и использует те же подпрограммы обработки многоугольного окна отсечения, что и алгоритм Кируса-Бека.

Многоугольник отсекается одним ребром выпуклого окна отсечения. В результате такого отсечения формируется новый многоугольник, который затем отсекается следующим ребром и т.д., пока не будет выполнено отсечение последним ребром окна.

Основная здесь процедура - процедура отсечения отдельным ребром, определяющая взаимное расположение очередной стороны многоугольника и ребра отсекателя и генерирующая соответствующие выходные данные.

Возможны 9 различных случаев расположения ребра окна и отсекаемой стороны, показанных на рис. 0.3.26-0.3.28.


Рисунок 58

Рис. 0.3.24: Начальная точка вне ребра окна отсечения.

На них V0 и V1 - начальная и конечная точки отсекаемой стороны многоугольника, соответственно; Nr - нормаль к ребру окна отсечения, направленная внутрь окна.


Рисунок 59

Рис. 0.3.25: Начальная точка на ребре окна отсечения.

Из этих рисунков очевидны правила генерации выходных данных, зависящие от варианта взаимного расположения:

1) Нет выходных данных.

2) В выходные данные заносится конечная точка.

3) Рассчитывается пересечение и в выходные данные заносятся точка пересечения и конечная точка.

4) Нет выходных данных.

5) В выходные данные заносится конечная точка.

6) В выходные данные заносится конечная точка.

7) Рассчитывается пересечение и в выходные данные заносится только точка пересечения.

8) В выходные данные заносится конечная точка.

9) В выходные данные заносится конечная точка.


Рисунок 60

Рис. 0.3.26: Начальная точка внутри окна отсечения.

Для определения взаимного расположения, подобно алгоритму отсечения Кируса-Бека, используется скалярное произведение Q вектора нормали на вектор, проведенный из начала ребра в анализируемую точку. Пояснение см. на рис. 8.10.


Рисунок 61

Рис. 8.10. Анализ расположения точки относительно ребра окна отсечения.

Таким образом, для определения взаимного расположения начальной V0 и конечной V1 точек отсекаемой стороны и ребра отсечения с вектором его начала R, надо вычислить:

Qn    =   (  V0   -  R  )  ·  Nr       и
Qk    =   (  V1   -  R  )  ·  Nr.

Расчет пересечения, если он требуется, производится аналогично алгоритму Кируса-Бека с использованием параметрического представления линии:

V(t)    =   V0   +  (  V1   -  V0  )  ·  t.

Вначале находится значение параметра t для точки пересечения по формуле (см. описание алгоритма Кируса-Бека):

t    =   -Qn  /  Pn,

где Qn - скалярное произведение вектора нормали к ребру окна на вектор из начала ребра в начальную точку стороны, уже вычисленное при определении расположения начальной точки, а Pn    =   (V1 - V0)·  Nr - скалярное произведение вектора нормали к ребру окна на вектор из начальной в конечную точки отсекаемой стороны.

Легко выразить это произведение через уже вычисленные величины Qn и Qk:

Pn
=
(V1 - V0)·  Nr
=
(V1 - V0 - R + R)·  Nr
=
(V1 - R)·  Nr   -  (V0 - R)·  Nr
=
Qk - Qn.

Таким образом, точке пересечения соответствует значение параметра t, равное:

t    =   Qn  /  (  Qn   -  Qk  ).

Значения координат пересечения находятся из:

Xp    =   X0   +  (X1  -  X0)·  t;      Yp    =   Y0   +  (Y1  -  Y0)·  t.

Описанный алгоритм реализован в процедуре V_Plclip, приведенной в Приложении 8.

0.7.3  Алгоритм отсечения многоугольника Вейлера-Азертона

В предыдущих разделах были рассмотрены два алгоритма отсечения многоугольника, последовательно отсекающие произвольный (как выпуклый, так и невыпуклый) многоугольник каждой из сторон выпуклого окна. Зачастую же требуется отсечение по невыпуклому окну. Кроме того оба рассмотренных алгоритма могут генерировать лишние стороны для отсеченного многоугольника, проходящие вдоль ребра окна отсечения. Далее рассматриваемый алгоритм Вейлера-Азертона [41,,] свободен от указанных недостатков ценой заметно большей сложности и меньшей скорости работы.

Предполагается, что каждый из многоугольников задан списком вершин, причем таким образом, что при движении по списку вершин в порядке их задания внутренняя область многоугольника находится справа от границы.

В случае пересечения границ и отсекаемого многоугольника и окна возникают точки двух типов:

· входные точки, когда ориентированное ребро отсекаемого многоугольника входит в окно,

· выходные точки, когда ребро отсекаемого многоугольника идет с внутренней на внешнюю стороны окна.

Общая схема алгоритма Вейлера-Азертона для определения части отсекаемого многоугольника, попавшей в окно, следующая:

  1. Строятся списки вершин отсекаемого многоугольника и окна.

  2. Отыскиваются все точки пересечения. При этом расчете касания не считаются пересечением, т.е. когда вершина или ребро отсекаемого многоугольника инцидентна или совпадает со стороной окна (рис. 0.3.29 и 0.3.30).

  3. Списки координат вершин отсекаемого многоугольника и окна дополняются новыми вершинами - координатами точек пересечения. Причем если точка пересечения Pk находится на ребре, соединяющем вершины Vi, Vj, то последовательность точек Vi, Vj превращается в последовательность Vi, Pk, Vj. При этом устанавливаются двухсторонние связи между одноименными точками пересечения в списках вершин отсекаемого многоугольника и окна.
    Входные и выходные точки пересечения образуют отдельные подсписки входных и выходных точек в списках вершин.

  4. Определение части обрабатываемого многоугольника, попавшей в окно выполняется следующим образом:
    Если не исчерпан список входных точек пересечения, то выбираем очередную входную точку.
    Двигаемся по вершинам отсекаемого многоугольника пока не обнаружится следующая точка пересечения; все пройденные точки, не включая прервавшую просмотр, заносим в результат; используя двухстороннюю связь точек пересечения, переключаемся на просмотр списка вершин окна.
    Двигаемся по вершинам окна до обнаружения следующей точки пересечения; все пройденные точки, не включая последнюю, прервавшую просмотр, заносим в результат.
    Используя двухстороннюю связь точек пересечения, переключаемся на список вершин обрабатываемого многоугольника.
    Эти действия повторяем пока не будет достигнута исходная вершина - очередная часть отсекаемого многоугольника, попавшая в окно, замкнулась. Переходим на выбор следующей входной точки в списке отсекаемого многоугольника.


Рисунок 62

Рис. 0.3.27: Случаи не считающиеся пересечением.


Рисунок 63

Рис. 0.3.28: Частные случаи пересечения.

Модификация этого алгоритма для определения части отсекаемого многоугольника, находящейся вне окна, заключается в следующем:

· исходная точка пересечения пересечения берется из списка выходных точек,

· движение по списку вершин окна выполняется в обратном порядке, т.е. так чтобы внутренняя часть отсекателя была слева.

На рис. 0.3.31 иллюстрируется отсечение многоугольника ABCDEFGHI окном PQRS по алгоритму Вейлера-Азертона.


Рисунок 64

Рис. 0.3.29: Отсечение по алгоритму Вейлера-Азертона.

Начиная с этого алгоритма, при рассмотрении многих дальнейших требуется представления о различных структурах данных и работе с ними. Следующий раздел и посвящен беглому рассмотрению некоторых наиболее важных структур данных.

к оглавлению

Знаете ли Вы, что, как и всякая идолопоклонническая религия, релятивизм ложен в своей основе. Он противоречит фактам. Среди них такие:

1. Электромагнитная волна (в религиозной терминологии релятивизма - "свет") имеет строго постоянную скорость 300 тыс.км/с, абсурдно не отсчитываемую ни от чего. Реально ЭМ-волны имеют разную скорость в веществе (например, ~200 тыс км/с в стекле и ~3 млн. км/с в поверхностных слоях металлов, разную скорость в эфире (см. статью "Температура эфира и красные смещения"), разную скорость для разных частот (см. статью "О скорости ЭМ-волн")

2. В релятивизме "свет" есть мифическое явление само по себе, а не физическая волна, являющаяся волнением определенной физической среды. Релятивистский "свет" - это волнение ничего в ничем. У него нет среды-носителя колебаний.

3. В релятивизме возможны манипуляции со временем (замедление), поэтому там нарушаются основополагающие для любой науки принцип причинности и принцип строгой логичности. В релятивизме при скорости света время останавливается (поэтому в нем абсурдно говорить о частоте фотона). В релятивизме возможны такие насилия над разумом, как утверждение о взаимном превышении возраста близнецов, движущихся с субсветовой скоростью, и прочие издевательства над логикой, присущие любой религии.

4. В гравитационном релятивизме (ОТО) вопреки наблюдаемым фактам утверждается об угловом отклонении ЭМ-волн в пустом пространстве под действием гравитации. Однако астрономам известно, что свет от затменных двойных звезд не подвержен такому отклонению, а те "подтверждающие теорию Эйнштейна факты", которые якобы наблюдались А. Эддингтоном в 1919 году в отношении Солнца, являются фальсификацией. Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
Bourabai Research - Технологии XXI века Bourabai Research Institution