Два года спустя после окончания университета Александр Ляпунов обратился к своему бывшему профессору П. Л. Чебышеву с просьбой дать ему тему для научного исследования. Знаменитый русский математик предложил молодому коллеге задачу, полностью аналогичную той, к которой спустя некоторое время приступил Паункаре: найти новые формы равновесия вращающейся жидкости, в которые переходят эллипсоиды Маклорена и Якоби. "Вот если бы вы разрешили этот вопрос, на вашу работу сразу обратили бы внимание", - прибавил маститый петербургский академик.
Это было в 1882 году. Ляпунов сразу же принялся за работу. Об актуальности этой задачи для науки того времени свидетельствует тот факт, что Чебышев не раз уже предлагал ее молодым талантливым математикам, в том числе Софье Ковалевской. Получив приближенное решение, Ляпунов столкнулся с непреодолимыми трудностями, когда пытался уточнить полученные результаты. После ряда неудач молодой математик вынужден был отложить вопрос на неопределенное время. Но усилия его не пропали даром. В ходе работы у него родилась мысль о Другой научной задаче: исследовать устойчивость уже известных, эллипсоидальных форм равновесия. Это и составило предмет его магистерской диссертации, опубликованной в 1884 году. В ней он излагал и доказывал свои выводы об устойчивости различных эллипсоидов равновесия. Кроме того, им было показано, что при некоторых Условиях эллипсоиды переходят в непохожие на них новые формы равновесия, среди которых были
грушевидные. Но поскольку задача была решена с ограниченной точностью, лишь в первом приближении, то Ляпунов не считал строго доказанным существование этих новых фигур равновесия.Через год после опубликования своей диссертации Ляпунов, просматривая номера парижского журнала "Согпр-tes rendus", встретил заинтересовавшую его заметку Пуанкаре, уже хорошо известного в России французского математика. Решая ту же задачу, Пуанкаре пришел к результатам, совпадающим с результатами незнакомого ему русского коллеги.
Но о новых фигурах равновесия он говорил без той осторожности, которую проявил Ляпунов, уверенно утверждая, что они существуют. Прочитав заметку, Ляпунов посылает в Париж экземпляр своей диссертации с письмом, в котором выражает сомнения в возможности строго доказать существование неэллипсоидальных форм равновесия. Он просит Пуанкаре сообщить ему идею своего метода.Вскоре из Парижа приходит ответ. Пуанкаре благодарит Ляпунова за присланную диссертацию и сетует на то, что не может как следует с ней ознакомиться из-за незнания русского языка. Тем не менее, основываясь на кратком переводе, который был сделан в "Астрономическом бюллетене", он приходит к выводу, что Ляпунов опередил его по некоторым пунктам. Пуанкаре собирается выслать оттиск своей статьи и просит сообщить о сходстве и различии с работой Ляпунова во всем, что касается результатов и методов. "Я составлю в соответствии с Вашими указаниями заметку, в которой воздам Вам должное и которая будет напечатана в "Актах", - сообщает он.
Так завязалась оживленная многолетняя переписка Пуанкаре, а затем и других французских ученых - П. Аппеля, Э. Пикара, К. Жордана, П. Дюгема, Ж. Ада-мара - с далеким русским математиком. Его научные достижения получают у них высокую оценку и вызывают искреннее восхищение. П. Дюгем по поводу одной работы Ляпунова сообщает впоследствии в очередном своем письме: "Я нахожу там одно замечание, которое я думал, что сделал первым. Вы меня опередили на 20 лет!" Успехи А. М. Ляпунова и его коллег приковывают внимание парижского ученого света к петербургской математической школе. Этот интерес явно выражен в письме
Аппеля. в котором он обращается к Ляпунову с необычным предложением: "Ввиду того, что работам, опубликованным на русском языке, придается большое значение", неплохо было бы найти какого-нибудь русского математика, знающего французский язык, который мог бы регулярно присылать для "Бюллетеня математических наук" обзоры этих работ. "Вы оказали бы таким образом науке большую услугу", - заключает Аппель свою просьбу. Именно после этого письма, датированного декабрем 1896 года, все основные работы Ляпунова публикуются на французском языке. Но до этого события пройдет еще целое десятилетие. А пока Пуанкаре и Ляпунов, преодолевая разделяющие их пространство и языковой барьер, пытаются посвятить друг друга в суть своих методов и идей.
Отвечая на вопрос своего петербургского адресата, Пуанкаре сообщает, что столкнулся с такими же трудностями, доказывая существование неэллиптических форм равновесия, и не смог продвинуться дальше первого приближения. Если же он все-таки утверждает, что эти фигуры равновесия существуют, то "только на основании некоторых аналогий и на основании своего убеждения, что строгое доказательство может быть найдено". Ляпунова совершенно не удовлетворило это объяснение, как не убедили его и доказательства, приведенные в ме-муаре Пуанкаре, опубликованном в "Акта математика". Сказалось различие стилей и методов научной работы обоих математиков. Это были два различных типа творца. Хоть Пуанкаре и причисляли в то время к плеяде молодых французских математиков, его подход к решению прикладных научных проблем был скорее физическим. В своих исследованиях он широко использует наглядные, геометрические соображения, руководствуется нестрогими, с точки зрения чистых математиков, суждениями, опирается на свою потрясающую физическую интуицию, которая весьма часто приводит его к правильному конечному результату в самых запутанных и абстрактных вопросах. По силе интуиции Сильвестр сравнивал Пуанкаре с выдающимся немецким математиком Бернгардом Риманом. Но с не меньшим основанием его можно было бы сравнить и с французом Жаном Фурье, который в математических изысканиях нередко полагался лишь на свою мощную интуицию, пренебрегая вопросами математической строгости. Пуанкаре прямо заявлял, что
"в механнке нельзя требовать такой же строгости, как п в чистом анализе".Ляпунов тяготел к другому полюсу научного творчества. Все его работы были безупречны в отношении точности математических рассуждений, ясности и строгости доказательств. Возражая против подхода, применяемого в работах Пуанкаре, он пишет, что "если иной раз п возможно пользоваться неясными рассмотрениями, когда желают установить новый принцип, который логически не вытекает из того, что было уже принято, и который по своей природе не может быть в противоречии с другими принципами науки, однако непозволительно это делать, когда должны решать определенную задачу (из механики или физики), которая поставлена совершенно точно с точки зрения математической. Эта задача делается тогда проблемой математического анализа и должна решаться как таковая". По мнению Ляпунова, задача о фигурах равновесия вращающейся жидкости, будучи поставлена как предмет математического исследования, должна решаться с той же строгостью, что и все остальные задачи математики. Но в продолжение последующих пятнадцати лет он не занимается этой проблемой, увлеченный другими делами. Лишь после избрания его в 1901 году в Академию наук, получив необходимый для этого досуг, Ляпунов возвращается к задаче Чебышева и через несколько лет получает полное и точное ее решение.
Ранние работы Ляпунова были почти неизвестны в Европе, за исключением узкого круга французских математиков. Только в 1904 году была полностью переведена на французский язык его магистерская диссертация. Неудивительно, что исследования Пуанкаре по фк-гурам равновесия вращающейся жидкости долгое время оставались в глазах механиков и астрономов самым последним и самым авторитетным словом в решении этой вековой проблемы.
1 Имеется в виду журнал "Акта математика".
Дело в том, что в его постановке и выводах произведена подмена, аналогичная подмене в школьной шуточной задачке на сообразительность, в которой спрашивается:
- Cколько яблок на березе, если на одной ветке их 5, на другой ветке - 10 и так далее
При этом внимание учеников намеренно отвлекается от того основополагающего факта, что на березе яблоки не растут, в принципе.
В эксперименте Майкельсона ставится вопрос о движении эфира относительно покоящегося в лабораторной системе интерферометра. Однако, если мы ищем эфир, как базовую материю, из которой состоит всё вещество интерферометра, лаборатории, да и Земли в целом, то, естественно, эфир тоже будет неподвижен, так как земное вещество есть всего навсего определенным образом структурированный эфир, и никак не может двигаться относительно самого себя.
Удивительно, что этот цирковой трюк овладел на 120 лет умами физиков на полном серьезе, хотя его прототипы есть в сказках-небылицах всех народов всех времен, включая барона Мюнхаузена, вытащившего себя за волосы из болота, и призванных показать детям возможные жульничества и тем защитить их во взрослой жизни. Подробнее читайте в FAQ по эфирной физике.