Топология (конфигурация) характеризует свойства сетей, систем и программ, не зависящие от их размеров. Она изучает структуру, образуемую физическими объектами и множеством связывающих их каналов либо частей каналов.
Конфигурация соединения элементов более интересна, чем другие характеристики сети. Это связано с тем, что именно конфигурация во многом определяет многие важнейшие свойства сети - надежность (живучесть), производительность и др.
Согласно одному из подходов к классификации конфигурации, сети делят на два основных класса:
1. Широковещательные.
2. Последовательные.
В широковещательных конфигурациях каждая абонентская система передает сигналы, которые могут быть восприняты остальными системами. К таким конфигурациям относят:
1) общая шина;
2) дерево;
3) звезда.
В широковещательных конфигурациях должны применяться сравнительно более мощные приемник и передатчик, которые могут работать с сигналами в большом диапазоне уровней. Эта проблема частично решается введением ограничений на длину кабельного сегмента и на число подключений или использованием цифровых повторителей.
Тип общая шина (см.рис. 1) позволяет значительно упростить логическую и программную структуру сети, снизить расход кабеля.
Конфигурация типа дерево (см.рис.2) представляет собой более развитый вариант конфигурации типа общая шина. Дерево образуется путем соединения нескольких шин активными повторителями или сетевыми концентраторами (“хабами”). Оно обладает необходимой гибкостью для того, чтобы охватить средствами ЛС несколько зданий на определенной территории. При наличии активных повторителей отказ одного сегмента не приводит к выходу из строя остальных. В случае отказа повторителя дерево разделяется на два поддерева или на две шины.
Развитием конфигурации типа дерево является сеть типа звезда (см.рис.3), которую можно рассматривать как дерево, имеющее корень с ответвлениями к каждому подключенному устройству. В центре звезды может находиться пассивный соединитель или хаб - достаточно простые и надежные устройства. Звездообразные сети менее надежны, чем шина или дерево, но они могут быть защищены от нарушений в кабеле с помощью центрального реле, которое отключает вышедшие из строя кабельные лучи. Такая звезда требует большого количества кабеля.
В последовательных конфигурациях каждый физический подуровень передает информацию только одной из абонентских систем. К передатчикам или приемникам систем здесь предъявляются более низкие требования, чем в широковещательных, и на различных участках сети могут использоваться разные виды физической среды.
Наиболее распространенные последовательные конфигурации:
1) произвольная;
2) иерархическая;
3) кольцо;
4) цепочка;
5) звезда с “интеллектуальным” центром;
6) снежинка.
При произвольном соединении (см.рис.4) все устройства соединены непосредственно. Каждая линия может использовать в себе различные методы передачи. Такой способ соединения устройств вполне удовлетворителен для сетей с ограниченным числом соединений. Преимущество данного типа - простота. Однако он имеет высокую стоимость, большое число каналов связи и необходимость маршрутизации информации.
В иерархическом соединении (см.рис.5) промежуточные узлы работают по принципу: “накопи и передай”. Преимущества данного метода - оптимальное соединение элементов сети. Недостатки - сложность логической и программной структуры, различная скорость передачи информации на различных уровнях.
В конфигурациях кольцо, цепочка, звезда с “интеллектуальным” центром, снежинка (см.рис.6-9) для правильного функционирования сети необходима постоянная работа всех блоков. Чтобы уменьшить эту зависимость в каждый блок включают реле, блокирующее блок при неисправностях. Для упрощения сигналы передаются по кольцу только в одном направлении. Недостатки - замедленная передача данных (в зависимости от числа рабочих станций), меньшая надежность. Достоинства - простота методов управления, высокая пропускная способность при меньших энергозатратах, простота расширения сети.
Рис.1 |
Рис. 2 |
Рис. 3 |
Рис. 4 |
Рис. 5 |
Рис. 6 |
|
||
Рис. 7 |
Рис. 8 |
Рис. 9 |
В то время как небольшие сети, как правило, имеют типовую топологию звезда, кольцо, или общая шина, для крупных сетей характерно наличие произвольных связей между компьютерами. В таких сетях можно выделить отдельные произвольно связанные фрагменты (подсети), имеющие типовую топологию, поэтому их называют сетями со смешанной топологией.
При выборе оптимальной топологии используются три основные цели:
1. Электромагнитная волна (в религиозной терминологии релятивизма - "свет") имеет строго постоянную скорость 300 тыс.км/с, абсурдно не отсчитываемую ни от чего. Реально ЭМ-волны имеют разную скорость в веществе (например, ~200 тыс км/с в стекле и ~3 млн. км/с в поверхностных слоях металлов, разную скорость в эфире (см. статью "Температура эфира и красные смещения"), разную скорость для разных частот (см. статью "О скорости ЭМ-волн")
2. В релятивизме "свет" есть мифическое явление само по себе, а не физическая волна, являющаяся волнением определенной физической среды. Релятивистский "свет" - это волнение ничего в ничем. У него нет среды-носителя колебаний.
3. В релятивизме возможны манипуляции со временем (замедление), поэтому там нарушаются основополагающие для любой науки принцип причинности и принцип строгой логичности. В релятивизме при скорости света время останавливается (поэтому в нем абсурдно говорить о частоте фотона). В релятивизме возможны такие насилия над разумом, как утверждение о взаимном превышении возраста близнецов, движущихся с субсветовой скоростью, и прочие издевательства над логикой, присущие любой религии.
4. В гравитационном релятивизме (ОТО) вопреки наблюдаемым фактам утверждается об угловом отклонении ЭМ-волн в пустом пространстве под действием гравитации. Однако астрономам известно, что свет от затменных двойных звезд не подвержен такому отклонению, а те "подтверждающие теорию Эйнштейна факты", которые якобы наблюдались А. Эддингтоном в 1919 году в отношении Солнца, являются фальсификацией. Подробнее читайте в FAQ по эфирной физике.