к оглавлению

10.3. Работа транзисторного каскада в режиме малого сигнала

Цель

1. Исследование коэффициента усиления по напряжению в усилителях с общим эмиттером и общим коллектором.

2. Определение фазового сдвига сигналов в усилителях.

3. Измерение входного сопротивления усилителей.

4. Исследование влияния входного сопротивления усилителя на коэффициент усиления по напряжению.

5. Измерение выходного сопротивления усилителей.

6. Анализ влияния нагрузки усилителя на коэффициент усиления по напряжению.

7. Исследование влияния разделительного конденсатора на усиление переменного сигнала.

8. Анализ влияния сопротивления Rэ в цепи эмиттера на коэффициент усиления по напряжению.

Electronics Workbench V 5.12

Краткие сведения из теории Коэффициент усиления по напряжению определяется отношением амплитуд выходного синусоидального напряжения к входному:

Electronics Workbench V 5.12

1. Усилитель с общим эмиттером. Схема усилителя с общим эмиттером представлена нa puc. 10.16. Коэффициент усиления по напряжению усилителя с ОЭ приближенно равен отношению сопротивления в цепи коллектора rк к сопротивлению в цепи эмиттера rэ:

Electronics Workbench V 5.12

где Гц - сопротивление в цепи коллектора, которое определяется параллельным соединением сопротивления коллектора Rк и сопротивления нагрузки RH, (не показанном на рис. 10.15), чью роль может играть, например следующий усилительный каскад:

Electronics Workbench V 5.12

Гэ - дифференциальное сопротивление эмит-терного перехода, равное т., = 25мВ/1э. Для усилителя с сопротивлением Ra в цепи эмиттера коэффициент усиления равен:

Electronics Workbench V 5.12

Входное сопротивление усилителя по переменному току определяется как отношение амплитуд синусоидального входного напряжения UBX и входного тока iвх:

Electronics Workbench V 5.12

Входное сопротивление транзистора ri определяется по формуле: r,=Brэ. Входное сопротивление усилителя по переменному току гвх вычисляется как параллельное соединение сопротивлений ri R1 и R2:

Electronics Workbench V 5.12

Electronics Workbench V 5.12

Значение дифференциального выходного сопротивления схемы находится по напряжению Uxx холостого хода на выходе усилителя, которое может быть измерено как падение напряжения на сопротивлении нагрузки, превышающем 200 кОм, и по напряжению uвых, измеренному для данного сопротивления нагрузки RH, из следующего уравнения, решаемого относительно rвых:

Electronics Workbench V 5.12

Electronics Workbench V 5.12 Сопротивление RH 2 200 кОм можно считать разрывом в цепи нагрузки.

2. Усилитель с общим коллектором. Схема усилителя с общим коллектором или эмиттерного повторителя представлена на рис. 10.16. Коэффициент усиления по напряжению усилителя с ОК определяется из следующего выражения:

Electronics Workbench V 5.12

Как видно из выражения, коэффициент усиления каскада с общим коллектором приближенно равен 1, поскольку Гэ обычно мало по сравнению с сопротивлением Rэ. Из-за этого свойства каскад называют эмиттерным по-

Electronics Workbench V 5.12

вторителем. Входное сопротивление усилителя Гвх по переменному току определяется как отношение амплитуд синусоидального входного напряжения UBX и входного тока 1вх:

Electronics Workbench V 5.12

Входное сопротивление эмиттерного повторителя по переменному току определяется следующим выражением:

Electronics Workbench V 5.12

В данном случае для определения входного сопротивления каскада нужно принять во внимание сопротивление резисторов R1 и R2. С учетом сказанного получим:

Electronics Workbench V 5.12

Также при расчете схем необходимо учитывать сопротивление нагрузки, которая включается параллельно сопротивлению эмиттера Rэ. Из выражений для входного сопротивления видно, что эмиттерный повторитель обладает высоким входным сопротивлением по сравнению с каскадом с ОЭ. В общем случае выходное сопротивление эмиттерного повторителя в BAC+1 раз меньше сопротивления Rист источника сигнала на входе эмиттерного повторителя:

Electronics Workbench V 5.12

Если сопротивление Rист источника сигнала на входе эмиттерного повторителя пренебрежимо мало, то выходное сопротивление эмиттерного повторителя будет равно дифференциальному сопротивлению перехода база-эмиттер: rвых = rэ В случае, когда сопротивление Rист источника сигнала на входе очень велико (сравнимо с BACRэ), сопротивление Rэ должно быть учтено как включенное параллельно наиденному выходному сопротивлению эмиттерного повторителя. Экспериментально выходное сопротивление каскада можно определить по результатам двух измерений: измерения напряжения холостого хода Uxx (на выход каскада подключается сопротивление порядка 200 кОм и измеряется падение напряжения на нем) и измерения выходного напряжения Uвых при наличии нагрузки сопротивлением Rн. После измерений выходное сопротивление можно подсчитать по формуле:

Electronics Workbench V 5.12

Благодаря высокому входному и низкому выходному сопротивлениям каскад с общим коллектором очень часто используют в качестве согласующего между источником и нагрузкой.

Порядок проведения экспериментов Эксперимент 1. Исследование каскада с общим эмиттером в области малого сигнала. а). Открыть файл с10_010 со схемой, изображенной на рис. 10.17. Установочные параметры приборов также должны соответствовать изображению.

Electronics Workbench V 5.12

б). Включить схему. Для установившегося режима в раздел "Результаты экспериментов" записать результаты измерений амплитуд входного и выходного напряжений, разности фаз входного и выходного синусоидальных сигналов (разность фаз можно определить при помощи Воде-плоттера). По результатам измерений амплитуд входного и выходного синусоидальных напряжений, вычислить коэффициент усиления усилителя по напряжению. Результат записать в раздел "Результаты экспериментов".

в). Для схемы на рисунке определить ток эмиттера. По его значению вычислить дифференциальное сопротивление rэ эмиттерного перехода. Используя найденное значение, вычислить коэффициент усиления каскада по напряжению. Результаты записать в раздел "Результаты экспериментов".

г). Подключить резистор RD между точкой UBX и конденсатором C1, разомкнув ключ [Space]. Включить схему. Измерить амплитуды входного UBX и выходного Uвых напряжения. Вычислить новое значение коэффициента усиления по напряжению по результатам измерений. Результаты записать в раздел "Результаты экспериментов".

д). Переместить щуп канала А осциллографа в узел Us. Снова включить схему и измерить амплитуду UB входного синусоидального напряжения в точке UБ. По результатам измерения напряжения UБ и ивых вычислить коэффициент усиления по напряжению усилительного каскада. По результатам измерения амплитуд напряжения UBX и UB вычислить входной ток 1вх. По значениям Uвх И iвx вычислить входное сопротивление rвх усилителя по переменному току. Результаты записать в раздел "Результаты экспериментов".

е). По значению коэффициента усиления тока B, полученному в эксперименте 1 раздела 10.1, и величине дифференциального эмиттерного сопротивления rэ вычислить входное сопротивление транзистора г,. Вычислить значение rвх, используя значения сопротивлении R1, R2 и ri. Результаты записать в раздел "Результаты экспериментов".

ж). Замкнуть резистор RD между узлом UBX и конденсатором C1, замкнув ключ [Space]. Переместить щуп канала А осциллографа в узел UBX. Установить номинал резистора RL 2 кОм. Затем включить схему и измерить амплитуды входного и выходного синусоидального напряжения. Используя результаты измерений, вычислить новое значение коэффициента усиления по напряжению. Результаты записать в раздел "Результаты экспериментов".

з). Используя результаты измерений амплитуды выходного синусоидального напряжения в пункте б) и пункте ж), значение сопротивления нагрузки в пункте ж), вычислить выходное сопротивление усилителя. Результат записать в раздел "Результаты экспериментов". и). Установить номинал резистора RL 200 кОм. Переставить щуп канала В осциллографа в узелке и включить схему. Измерить постоянную составляющую выходного сигнала и записать результат измерения в раздел "Результаты экспериментов". к). Вернуть щуп канала В осциллографа в узел Uouт. На осциллографе установить масштаб для входа 10 мВ/дел. Убрать шунтирующий конденсатор Сз и включить схему. Измерить амплитуды входного и выходного синусоидального напряжения. По результатам измерений вычислить значение коэффициента усиления каскада с ОЭ с сопротивлением в цепи эмиттера по напряжению. Записать результаты в раздел "Результаты экспериментов". л). По величине сопротивления Гэ и значению сопротивления Rэ вычислить значение коэффициента усиления усилителя с ОЭ с сопротивлением в цепи эмиттера по напряжению.

Эксперимент 2. Исследование каскада с общим коллектором в области малого сигнала. а). Открыть файл с10_011 со схемой, изображенной на рис. 10.18. Установочные параметры приборов в схеме должны соответствовать установочным параметрам приборов на рисунке. Для удобства при проведении эксперимента оставьте увеличенным только изображение осциллографа и мультиметра. Мультиметр должен быть установлен для измерения постоянного напряжения.

Electronics Workbench V 5.12

б). Включить схему. Измерить постоянные составляющие напряжения в точках UB и Uэ. Вычислить постоянные составляющие напряжения в точках UB, Uэ и ток эмиттера, используя значения параметров компонентов схемы (Uвэ= 0.7 В). Результаты записать в раздел "Результаты экспериментов".

в). Закрыть увеличенное изображение мультиметра, оставив увеличенным только изображение осциллографа. Включить схему. Измерить амплитуды входного и выходного напряжения. Определить разность фаз между входным и выходным напряжением (это можно сделать при помощи Боде-плоттера). По результатам измерений вычислить коэффициент усиления по напряжению. Вычислить коэффициент усиления эмиттерного повторителя по напряжению, используя параметры схемы. Записать результаты в раздел "Результаты экспериментов".

г). Подключить резистор между точкой UBX и конденсатором С1, разомкнув ключ [Space]. Включить схему. Измерить амплитуды входного и выходного синусоидального напряжения. По результатам измерений амплитуды входного синусоидального сигнала в этом и предыдущем пунктах вычислить входной ток. По величинам iвx и UBX вычислить дифференциальное входное сопротивление Гвх. Записать результаты в раздел "Результаты экспериментов".

д). Используя значения параметров компонентов схемы, вычислить входное сопротивление каскада rвх(B = 200).

е). Закоротить резистор, замкнув ключ [Space]. Изменить номинал резистора RL до 200 кОм. Затем включить схему и записать результаты измерения выходного напряжения в раздел "Результаты экспериментов". Это напряжение приблизительно равно напряжению холостого хода, так как сопротивление 200 кОм можно считать разрывом цепи. Уменьшить значение этого сопротивления до 200 Ом и снова включить схему. Измерить амплитуду напряжения на нагрузке. Вычислить выходное сопротивление каскада по результатам измерений. Запишите значения напряжения холостого хода, напряжения на нагрузке и выходного сопротивления каскада в раздел "Результаты экспериментов". Результаты экспериментов

Эксперимент 1. Исследование каскада с общим эмиттером в области малого сигнала.

Electronics Workbench V 5.12

Electronics Workbench V 5.12

Electronics Workbench V 5.12

Эксперимент 2. Исследование каскада с общим коллектором в области малого сигнала.

Electronics Workbench V 5.12

Electronics Workbench V 5.12

Вопросы

1. Каково отличие практического и теоретического значений коэффициента усиления по напряжению?

2. Какова разность фаз между входным и выходным синусоидальными сигналами в усилителе с ОЭ? с ОК?

3. Как влияет входное сопротивление на коэффициент усиления по напряжению?

4. Какова связь между входным напряжением (узел Uвх) и напряжением на базе (узел UБ) при включении между ними сопротивления?

5. Каково отличие практического и теоретического значений входного сопротивления для усилителей по переменному току?

6. Каково отличие коэффициента усиления по напряжению, вычисленного в п. к), от коэффициента усиления по напряжению из п. в) эксперимента I? Объяснить ответ.

7. Какое влияние оказывает понижение сопротивления нагрузки на коэффициент усиления по напряжению?

8. Какова связь между выходным сопротивлением усилителя и сопротивлением в цепи коллектора RK?

9. Как влияет сопротивление Rэ на коэффициент усиления по напряжению усилителя?

10.Каково отличие практического и теоретического значений напряжения UБ по постоянному току?

11. Каково отличие практического и теоретического значений напряжения Uэ по постоянному току?

12.Каково отличие практического и теоретического значений коэффициента усиления по напряжению усилителя с ОК?

Почему значение коэффициента усиления по напряжению меньше единицы?

13.Каково отличие практического и теоретического значений входного сопротивления по переменному току усилителя с ОК? Велико ли это значение?

14.Велико ли значение выходного сопротивления усилителя с ОК?

15.Какова разность фаз входного и выходного синусоидальных сигналов?

16. В чем заключено главное достоинство схемы усилителя с ОК? В чем главное назначение этой схемы?

к оглавлению


Знаете ли Вы, что такое "Большой Взрыв"?
Согласно рупору релятивистской идеологии Википедии "Большой взрыв (англ. Big Bang) - это космологическая модель, описывающая раннее развитие Вселенной, а именно - начало расширения Вселенной, перед которым Вселенная находилась в сингулярном состоянии. Обычно сейчас автоматически сочетают теорию Большого взрыва и модель горячей Вселенной, но эти концепции независимы и исторически существовало также представление о холодной начальной Вселенной вблизи Большого взрыва. Именно сочетание теории Большого взрыва с теорией горячей Вселенной, подкрепляемое существованием реликтового излучения..."
В этой тираде количество нонсенсов (бессмыслиц) больше, чем количество предложений, иначе просто трудно запутать сознание обывателя до такой степени, чтобы он поверил в эту ахинею.
На самом деле взорваться что-либо может только в уже имеющемся пространстве.
Без этого никакого взрыва в принципе быть не может, так как "взрыв" - понятие, применимое только внутри уже имеющегося пространства. А раз так, то есть, если пространство вселенной уже было до БВ, то БВ не может быть началом Вселенной в принципе. Это во-первых.
Во-вторых, Вселенная - это не обычный конечный объект с границами, это сама бесконечность во времени и пространстве. У нее нет начала и конца, а также пространственных границ уже по ее определению: она есть всё (потому и называется Вселенной).
В третьих, фраза "представление о холодной начальной Вселенной вблизи Большого взрыва" тоже есть сплошной нонсенс.
Что могло быть "вблизи Большого взрыва", если самой Вселенной там еще не было? Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
Bourabai Research - Технологии XXI века Bourabai Research Institution