к оглавлению

Упражнения

10.4. Расчет и исследование параметров рабочей точки в транзисторных каскадах

Методические указания Транзистор характеризуется двумя семействами вольт-амперных характеристик (ВАХ): входных и выходных ВАХ. Семейство входных ВАХ представляет собой зависимость тока Iв от напряжения Uвэ при различных значениях напряжения Uкэ:

Electronics Workbench V 5.12 (10.1)

Семейство выходных ВАХ представляет собой зависимость тока коллектора Iк от напряжения на коллекторе Uкэ при различных значениях тока базы IБ.:

Electronics Workbench V 5.12 (10.2)

Существует несколько методов расчета параметров рабочей точки. Ниже изложены некоторые из них. Графоаналитический метод Этот метод основан на непосредственном использовании ВАХ транзистора, представленных в графическом виде. Рассмотрим схему транзисторного каскада с ОЭ, представленную на рис. 10.19. Для тока базы, можно записать следующие уравнения:

Electronics Workbench V 5.12

Решение системы в графическом виде представлено на рис. 10.20. Оно представляет собой точку пересечения кривых 1 и 2. Кривая 1 представляет собой входную ВАХ транзистора (уравнение 10.4) при условии, что напряжение Uкэ достаточно велико и его влиянием можно пренебречь. Кривая 2 является нагрузочной линией и описывается уравнением 10.3. Она отсекает на оси токов отрезок, численно равный току Ев/Rв, а на оси напряжений - отрезок, численно равный напряжению EБ. Координаты точки пересечения - ток I*в и напряжение U* вэ - являются искомыми входными током и напряжением транзистора. Для выходной цепи транзистора, т.е. для цепи коллектора, можно записать следующие уравнения:

Electronics Workbench V 5.12

Electronics Workbench V 5.12

Уравнение (10.6) описывает выходную ВАХ транзистора для найденного тока базы I*Б. На puc, 10.21 показано семейство выходных ВАХ транзистора для различных значений тока базы. Из этого семейства необходимо выделить ту ВАХ, ток базы которой наиболее близок к полученной величине 1*в. Может оказаться, что токи базы семейства ВАХ существенно отличаются от величины I*в. В этом случае необходимо выбрать две ветви ВАХ (для одной ток базы меньше, а для другой больше I*Б) и методом интерполяции построить ВАХ для заданного значения I*в. Уравнение (10.5) является уравнением нагрузочной прямой, которая показана в виде наклонной линии на. рис. 10.21. Выходная ВАХ и нагрузочная прямая пересекаются в точке С, которая является решением системы уравнений (10.5), (10.6) в графическом виде. Координаты точки С, т. е. ток I*к и напряжение U*кэ, являются, соответственно, искомыми выходными током и напряжением транзистора.

Electronics Workbench V 5.12

Electronics Workbench V 5.12

Аналитический метод При использовании этого метода решение систем уравнений (10.3, 10.4) и (10.5, 10.6) требуется найти в аналитическом виде. Поскольку уравнения (10.4) и (10.6) являются нелинейными, невозможно получить аналитическое решение в явном виде. Один из способов решения таких систем заключается в линеаризации нелинейных уравнений. На рис. 10.22 показана входная ВАХ транзистора (кривая 1). Предлагается аппроксимировать её прямой линией (прямая 2). Уравнение для такой аппроксимации имеет вид: Uкэ=UБзо+rвхIБ (10.7) где UБЭО - пороговое напряжение входной цепи, rBX - дифференциальное входное сопротивление транзистора для рабочей области его входной характеристики. В ряде случаев в полученном выражении (10.7) первое слагаемое значительно превышает второе. Поэтому с достаточной для практики точностью это выражение можно упростить: UБЭ=UБЭО. (10.8) На рис. 10.22 такое приближение отражается прямой 3.

Electronics Workbench V 5.12

На рис. 10.23 показана выходная ВАХ транзистора (кривая 1). Предлагается аппроксимировать эту ВАХ прямой линией. Уравнение для такой аппроксимации имеет вид:

Electronics Workbench V 5.12 (10.9)

где Р - статический коэффициент передачи тока в схеме ОЭ, IKO тепловой ток коллектора, Rвых - дифференциальное выходное сопротивление.

Electronics Workbench V 5.12

В выражении (10.9) первое слагаемое показывает, что ток коллектора пропорционален току базы. Второе слагаемое представляет собой обратный ток коллектора, который существует даже при 1в=0. Слагаемое Uкэ/Квых характеризует наклон ВАХ. В большинстве случаев в полученном выражении (10.9) первое слагаемое значительно превышает второе и третье. Поэтому с достаточной для практики точностью это выражение можно упростить:

Electronics Workbench V 5.12 (10.10)

Последнее выражение позволяет явно выразить ток эмиттера через ток базы:

Electronics Workbench V 5.12 (10.11)

Выражения (10.8), (10.10) являются удобными аппроксимациями нелинейных ВАХ транзистора, которые можно использовать для решения конкретных задач. Рассмотрим схему, изображенную на рис. 10.26. Ранее эта схема была рассчитана графоаналитическим способом. Используя выражение (10.7), можно определить ток базы в виде:

Electronics Workbench V 5.12 (10.12)

С помощью выражения (10.10) можно найти напряжение на коллекторе транзистора:

Electronics Workbench V 5.12 (10.13)

Метод эквивалентных схем. Этот метод основан на замене транзистора его эквивалентной схемой (другое название -схема замещения). Для получения эквивалентной схемы можно воспользоваться аналитическими выражениями для входной и выходной ВАХ транзистора. Линеаризованная входная ВАХ транзистора описывается выражением (10.7). В соответствии с этим выражением входная цепь транзистора представляется последовательно соединенными источником напряжения Uвэо и сопротивлением rвх (рис. 10.24). Линеаризованная выходная характеристика транзистора описывается выражением (10.9). Согласно этому выражению эквивалентная схема (рис. 10.24) выходной цепи транзистора представляется параллельно соединенными источниками тока BIБ и Iко и сопротивлением rвых. На рис. 10.24 представлена эквивалентная схема транзистора, составленная с учетом вышесказанного. Она пригодна для расчета как постоянных, так и переменных составляющих токов и напряжений. Однако для каждой из этих составляющих целесообразно представить эквивалентную схему в упрощенном виде. Расчет переменных составляющих будет рассмотрен в следующем разделе. Для постоянных составляющих, как было указано выше, можно использовать упрощенное выражение (10.10). В соответствии с этим выражением эквивалентная схема транзистора существенно упрощается (рис. 10.25}. Для расчета постоянных составляющих транзистор следует заменять его упрощенной схемой (рис. 10.25). Если принять во внимание выражение (10.8), схема еще более упростится -rБХ можно будет исключить. В условиях задач характеристики транзисторов могут быть представлены как в графическом виде, так и в линеаризованном. При решении задач в первом случае используется графоаналитический метод, во втором - аналитический метод или метод эквивалентных схем. Используются следующие параметры транзистора: UБЭО ~ пороговое напряжение входной цепи, BDC - статический коэффициент передачи тока в схеме с общим эмиттером, rБХ - дифференциальное входное сопротивление транзистора. Поскольку каждый из режимов работы транзистора характеризуется своими параметрами и имеет свою эквивалентную схему, то для расчета электронных схем необходимо, прежде всего, выяснить, в каком режиме работает транзистор. Существует три режима работы транзистора: усилительный режим, режим насыщения'и режим отсечки. Они описываются следующими выражениями: !• UBX < U1 - режим отсечки, 2. U1 < UBX < U2 - усилительный режим, 3. UBX >U2 - режим насыщения, где U1 - напряжение Uвэ, при котором транзистор переходит в усилительный режим, U2 - напряжение UБЭ, при котором транзистор переходит в режим насыщения. В рассматриваемых задачах транзистор работает в усилительном режиме. Эквивалентная схема транзистора в усилительном режиме приведена на. рис. 10.25.

Electronics Workbench V 5.12

Electronics Workbench V 5.12

Рассмотрим границы существования усилительного режима работы транзистора в схеме, представленной на рис. 10.26а. На рис. 10.266 для этой схемы показано построение графика зависимости выходного напряжения Пвых от входного напряжения UBX-Пока входное напряжение UBX остается меньше порогового напряжения Usao, транзистор находится в режиме отсечки. Эмиттер-ньш переход транзистора закрыт, ток базы 1в и ток коллектора 1ц равны нулю (в цепи кол-

Electronics Workbench V 5.12

лектора и в цепи базы текут тепловые токи, значения которых пренебрежимо малы). На резисторе RK отсутствует падение напряжения, выходное напряжение Uвыx равно напряжению источника питания Ек. Как только возрастающее входное напряжение превысит величину UБЭО транзистор переходит в усилительный режим работы. Следовательно, нижняя граница существования усилительного режима определяется просто: U,=UБЭО. (10.14) Работа схемы в усилительном режиме описывается следующими выражениями:

Electronics Workbench V 5.12

Ток коллектора не может превысить величину тока насыщения: Iкн=Eк/Rк (10.18) При этом насыщающий ток базы определяется выражением:

Electronics Workbench V 5.12 (10.19)

Эта величина тока определяет верхнюю границу существования усилительного режима работы транзистора: U2=IБНRБUБЭО. (10.20) При дальнейшем увеличении входного напряжения наступает режим насыщения. В этом режиме ток базы продолжает возрастать, а ток коллектора и выходное напряжение не изменяются. Для построения графической зависимости выходного напряжения от входного (см. нижнюю диаграмму на рис. 10.26) достаточно определить граничные значения входных напряжений U1, U2 и соответствующие этим значениям величины выходного напряжения. После этого левее границы U1 и правее границы U2 провести горизонтальные линии (линия отсечки и линия насыщения), а сами граничные точки соединить наклонной линией (линия усилительного режима). После теоретического расчета схемы усилителя Вам предлагается проверить его правильность с помощью программы Electronics Workbench.

Electronics Workbench V 5.12 При проверке следует помнить, что длярасчета использовались упрощенные эквивалентные схемы, в которых реальный транзистор заменен его моделью. В условиях задач также заданы идеализированные характеристики транзистора и линеаризованные зависимости. Поэтому не следует ожидать 100% совпадения с правильным ответом. т. к. в представленных задачах модель транзистора реальна, хотя и несколько идеализирована для некоторых задач. В связи с вышесказанным, при моделировании задач могут возникать определенные проблемы. В условиях задач заданы линеаризованные зависимости выходных величин от входных. В реальности же дело обстоит несколько иначе (см, рис. 10.27). Рассмотрим аналитический метод решения задач на примере схемы рис. 10.28. Дано: Ек= 6 V, 1=2.5 mA, R=2 к0м, Ев = 6 к0м, Uвэо=1В, BDC=20, RK = 400 Ом. Найти: Напряжение Uкэ. Преобразуем источник тока с сопротивлением R в источник напряжения с внутренним сопротивлением R по закону Ома. В результате преобразования получим схему, изображенную на рис. 10.29. Заменяя транзистор эквивалентной схемой рис. 10.25, получим:

Electronics Workbench V 5.12

Отсюда находим ток базы Iв:

Electronics Workbench V 5.12

Напряжение определяется по второму закону Кирхгофа:

Electronics Workbench V 5.12

где ток коллектора

Electronics Workbench V 5.12

Поэтому:

Electronics Workbench V 5.12

Electronics Workbench V 5.12

1 -линеаризованная зависимость выходного напряжения от входного, 2 —реальная зависимость выходного напряжения от входного.

Electronics Workbench V 5.12

Задачи для самостоятельного исследования Задание рабочей точки, транзисторного каскада На. рис. 10.30 и рис. 10.31 представлены схемы транзисторного каскада с общим эмиттером. Нужно определить один из параметров транзистора: коэффициент передачи тока базы BDC2 или входное сопротивление Rвх3- В каждом варианте дана зависимость выходного сигнала от входного воздействия. На вход подается либо входное напряжение UBX (Uin), либо входной ток IBX (Iin) Выходным сигналом может быть: напряжение нагрузки UH, ток нагрузки Iн, ток коллектора 1к, ток источника питания In. Все приведенные характеристики охватывают три режима работы транзистора: режим отсечки, усилительный режим и режим насыщения. В этом режиме справедливы выражения (10.13), (10.14), (10.15), полученные выше. Там же показано, что входная цепь заменяется последовательной цепочкой UБЭО - RBX (см. рис. 10.24, 10.25). Схемы, поясняющие условия задач, в которых входное сопротивление транзистора пренебрежимо мало

Electronics Workbench V 5.12

Electronics Workbench V 5.12

В дальнейшем в тексте задач параметр BDC обозначается просто р. В этом задании рассчитываются постоянные составляющие токов и напряжений. Динамическое входное сопротивление, определяемое изменением разности потенциалов на базе транзистора, равно нулю, поэтому полное входное сопротивление определяется омическим сопротивлением базы и может быть смоделировано с помощью резистора RBX последовательно подключенного к базе транзистора.

Рекомендации по выполнению работы:

1. Создайте при помощи Electronics Workbench одну из схем, изображенных на рис. 20.30 и 10.31, согласно условию задачи. Схемы представляют два случая: входное сопротивление транзистора пренебрежимо мало и входное сопротивление транзистора сопоставимо по величине с сопротивлением резисторов на входе схемы. Подставьте в схему заданные и рассчитанные значения номиналов элементов. Выберите указанный в условии задачи тип транзистора.

Electronics Workbench V 5.12 В библиотеках версии 4.0 Electronics Workbench нет транзисторов, типы которых указаны в условиях задач, поэтому, чтобы внести их в библиотеку, проделайте следующее: С дискеты, прилагающейся к книге, скопируйте файл ех10_1.т05 в подкаталог Models директории, в которой установлен Electronics Workbench 4.0. После этого имя файла библиотеки будет появляться в окне Models при выборе типа транзистора. В этой библиотеке вы найдете нужные транзисторы. 1.1. Для редактирования характеристик транзистора откройте окно свойств транзистора. Это можно проделать, дважды щелкнув на его изображении, или выбрав пункт Component Properties из меню Circuit. В открывшемся окне будет подсвечен транзистор, установленный в схеме. Для редактирования характеристик нажмите кнопку Edit. Статический коэффициент передачи тока устанавливается в строке Forward current gain coefficient (BF), пороговое напряжение Uвэо устанавливается в строке В-Е junction potential (0Е). Затем нажмите Accept для сохранения установленных параметров и Accept для возврата к схеме. 1.2. Для моделирования входного сопротивления транзистора используется резистор, последовательно подключенный к его базе. 1.3. Значком " отмечены данные, не использующиеся для расчетов, но нужные для моделирования задачи. 2. Включите схему. Подключите приборы. 'Подсчитайте статический коэффициент передачи транзистора. Сравните с расчетным значением.

Задачи

Задача 10.1.1. Дано: Electronics Workbench V 5.12

Транзисторы ZTX327, Q2N2222A, 2N2923. Найти: р.

Electronics Workbench V 5.12

Задача 10.1.2. Дано: Electronics Workbench V 5.12

Транзистор 2N3393. Найти: B.

Electronics Workbench V 5.12

Задача 10.1.3. Дано: Electronics Workbench V 5.12

Транзисторы ZTX327, Q2N2222A. Найти: Rвх.

Electronics Workbench V 5.12

Задача 10.1.4. Дано: Electronics Workbench V 5.12

Транзисторы ZTX327, Т502. Найти: B.

Electronics Workbench V 5.12

Задача 10.1.5. Дано: Electronics Workbench V 5.12

Транзисторы ZTX327, Q2N2222A. Т502. Найти:B.

Electronics Workbench V 5.12

Задача 10.1.6. Дано: Electronics Workbench V 5.12

Транзистор Q2N2222A. Найти: Rвх.

Electronics Workbench V 5.12

Задача 10.1.7. Дано: Electronics Workbench V 5.12

Транзисторы Q2N2222A, 2N3393. Найти:B.

Electronics Workbench V 5.12

Задача 10.1.8. Дано: Electronics Workbench V 5.12

Транзисторы 2N3393 Найти: B.

Electronics Workbench V 5.12

к оглавлению


Знаете ли Вы, что такое "усталость света"?
Усталость света, анг. tired light - это явление потери энергии квантом электромагнитного излучения при прохождении космических расстояний, то же самое, что эффект красного смещения спектра далеких галактик, обнаруженный Эдвином Хабблом в 1926 г.
На самом деле кванты света, проходя миллиарды световых лет, отдают свою энергию эфиру, "пустому пространству", так как он является реальной физической средой - носителем электромагнитных колебаний с ненулевой вязкостью или трением, и, следовательно, колебания в этой среде должны затухать с расходом энергии на трение. Трение это чрезвычайно мало, а потому эффект "старения света" или "красное смещение Хаббла" обнаруживается лишь на межгалактических расстояниях.
Таким образом, свет далеких звезд не суммируется со светом ближних. Далекие звезды становятся красными, а совсем далекие уходят в радиодиапазон и перестают быть видимыми вообще. Это реально наблюдаемое явление астрономии глубокого космоса. Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
Bourabai Research - Технологии XXI века Bourabai Research Institution