Цель 1. Исследование амплитудно-частотных характеристик элементов последовательного колебательного контура (резонанс напряжений). 2. Исследование фазочастотных характеристик элементов последовательного колебательного контура (резонанс напряжений). 3. Исследование амплитудно-частотных характеристик элементов параллельного колебательного контура (резонанс токов). 4. Исследование фазочастотных характеристик элементов параллельного колебательного контура(резонанс токов).
Приборы и элементы
Краткие сведения из теории 1. Резонанс в последовательном колебательном контуре (резонанс напряжений). Схема последовательного колебательного контура и векторная диаграмма для режима резонанса представлены на рис. 5.1
Контур характеризуется следующими параметрами:
волновым сопротивлением
резонансной частотой
добротностью контура
где Ucpез, ULpeз, URpeз - напряжения при резонансе на емкости, индуктивности и сопротивлении соответственно, хсрез, хLрез - реактивное сопротивление конденсатора и индуктивности на резонансной частоте. 2. Векторные диаграммы для последовательного контура при (ш > шрез)-Векторные диаграммы при увеличении частоты (ш> шрез) представлены на рис. 5.2 (слева представлена диаграмма для промежуточной частоты ш> шрез, справа - для предельного случая . С ростом частоты емкостное сопротивление убывает, а индуктивное нарастает, при этом суммарное реактивное сопротивление растет (рис. 5.2). Угол сдвига (о между входным током и напряжением увеличивается по абсолютному значению, оставаясь положительным. Напряжение на катушке индуктивности при росте частоты сначала увеличивается за счет роста сопротивления, а затем снижается из-за снижения тока в цепи. Максимум действующего значения напряжения достигается при характерной частоте FL
Порядок проведения экспериментов
Эксперимент 1. Измерение частотных характеристик последовательного колебательного контура с помощью осциллографа. а) Измерение действующих значений и фаз напряжений на элементах при резонансной частоте. Рассчитайте резонансную частоту о)о, частоту максимума напряжения на катушке индуктивности (OLH частоту максимума напряжения на конденсаторе Юс. Результаты расчета занесите в таблицу 5.1 в разделе «Результаты экспериментов». Откройте файл с5_01.са4 (рис. 5.7). Получите и зарисуйте на экране осциллографа в разделе «Результаты экспериментов» осциллограммы напряжений на резисторе Up, конденсаторе UQ и катушке индуктивности UL. Рассчитайте и измерьте действующее значение и фазу Е, Up, Uc и UL для Г=Грез с помощью осциллографа. Постройте векторные диаграммы на комплексной плоскости для этих частот, направив в каждой диаграмме ток по действительной оси. б) Измерение действующих значений и фаз напряжений на элементах при частоте F=0.5Fc. Получите и зарисуйте на экране осциллографа в разделе «Результаты экспериментов» осциллограммы напряжений на резисторе UR, конденсаторе Up и катушке индуктивности Ui при F=0.5Fc. Рассчитайте и измерьте действующее значение и фазу Е, ид, ид и UL с помощью осциллографа. Постройте векторные диаграммы на комплексной плоскости для этой частоты, направив в каждой диаграмме ток по действительной оси.
в) Измерение действующих значений и фаз напряжений на элементах при частоте F=2F^. Получите и зарисуйте на экране осциллографа в разделе «Результаты экспериментов» осциллограммы напряжений на резисторе UR, конденсаторе Uc и катушке индуктивности UL, напряжений на резисторе Up, конденсаторе Uc и катушке индуктивности UL для F=2Fi.. Рассчитайте и измерьте действующее значение и фазу Е, UR, Uc и UL с помощью осциллографа. Постройте векторные диаграммы на комплексной плоскости для этой частоты, направив в каждой диаграмме ток по действительной оси. Эксперимент 2. Частотные характеристики последовательного колебательного контура (исследования с помощью Боде-плоттера). Откройте файл с5_02.са4 (рис. 5.8). Подключая вывод Боде-плоттера на различные элементы контура (точки UL, UR, Uc на рис. 5.S), определите значения амплитудно-частотных и фазочастотных характеристик для частот 0, Шс / 4, (Ор / 2, Юр, (о)о-(0с) / 2, С0о, ((Оь-й1о) / 2, 0)ц 2o>L, 4oiL. Зарисуйте частотные характеристики на экранах Боде-плоттера, приведенных в разделе «Результаты экспериментов». Сравните результаты, полученные с помощью Боде-плоттера и осциллографа.
Рассчитайте амплитудно-частотные и фазочастотные характеристики для напряжении на резисторе Ur ), конденсаторе Uc и катушке индуктивности UL для частот
По результатам расчета нанесите точки АЧХ и ФЧХ для напряжений на сопротивлении, катушке индуктивности и конденсаторе на экспериментальные графики в разделе «Результаты экспериментов». Постройте векторные диаграммы на комплексной плоскости для этих частот, направив в каждой диаграмме ток по действительной оси.
Эксперимент 3. Измерение частотных характеристик параллельного колебательного контура с помощью осциллографа. а) Измерение действующих значений и фаз токов через элементы при резонансной частоте. Рассчитайте резонансную частоту, частоту максимума тока через катушку индуктивности через конденсатор . Результаты расчета занесите в таблицу 5. 2 в разделе «Результаты экспериментов?. Откройте файл с5_03. са4 (рис. 5. 9). Получите и зарисуйте на экране осциллографа в разделе «Результаты экспериментов» осциллограммы токов через резистор IR, конденсатор Ic и катушку индуктивности IL. Рассчитайте и измерьте действующее значение и фазу J, IR, Ic и IL для F=Fрез с помощью осциллографа. Постройте векторные диаграммы на комплексной плоскости для этих частот, направив в каждой диаграмме напряжение по действительной оси.
б) Измерение действующих значений и фаз тока через элементы при частоте F=0. 5 FL,. Получите и зарисуйте на экране осциллографа в разделе «Результаты экспериментов» осциллограммы токов через резистор iR, конденсатор ic и катушку индуктивности IL при F=0, 5FL. Рассчитайте и измерьте действующее значение и фазу J, IR, ic и IL для F=Fpeз с помощью осциллографа. Постройте векторные диаграммы на комплексной плоскости для этих частот, направив в каждой диаграмме напряжение по действительной оси.
в) Измерение действующих значений и фаз токов через элементы. при частоте F=2Fc. Рассчитайте резонансную частоту, частоту максимума напряжения на катушке индуктивности частоту максимума напряжения на конденсаторе . Получите и зарисуйте на экране осциллографа в разделе «Результаты экспериментов» осциллограммы токов через резистор IR, конденсатор Iс и катушку индуктивности IL при F=2Fc. Рассчитайте и измерьте действующее значение и фазу J, IК, Iс и IL для F=Fp с помощью осциллографа. Постройте векторные диаграммы на комплексной плоскости для этих частот, направив в каждой диаграмме напряжение по действительной оси.
Эксперимент 4. Частотные характеристики параллельного колебательного контура (исследования с помощью Боде-плоттера). Откройте файл с5_04. са4 (рис. 5. 10). Подключая вывод Боде-плоттера на различные элементы контура (точки IL, IR, ic на. рис. 5.8), определите значения амплитудно-частотных и фазочастотных характеристик для частот . Зарисуйте частотные характеристики на экранах Боде-плоттера, приведенных в разделе «Результаты экспериментов». Сравните результаты, полученные с помощью Боде-плоттера и осциллографа. Рассчитайте амплитудно-частотные и фазочастотные характеристики для напряжений на резисторе Ин(ю), конденсаторе ис(со) и катушке индуктивности ui.(co) для частот . По результатам расчета нанесите точки АЧХ и ФЧХ для токов через сопротивление и катушку индуктивности и конденсатор на экспериментальные графики в разделе «Результаты экспериментов».
Результаты экспериментов Эксперимент 1. Измерение частотных характеристик последовательного колебательного контура с помощью осциллографа. а) Измерение действующих значений и фаз напряжений на элементах при резонансной частоте.
Расчет сопротивлений
Действующие значения напряжений
Расчет (фаз напряжений по результатам измерений
б) Измерение действующих значений и фаз напряжений на элементах при частоте F=O.5Fc.
Расчет сопротивлений
Действующие значения напряжений
Расчет фаз напряжений по результатам измерений
в) Измерение действующих значений и фаз напряжений на элементах при частоте F=2FL.
Расчет сопротивлений
Расчет фаз напряжений по результатам измерений
Векторные диаграммы
Эксперимент 2. Частотные характеристики последовательного колебательного контура (исследования с помощью Боде-плоттера). Таблица 5. 1
Параметры
|
Значения параметров
|
||||||||||
Частота, Гц
|
|||||||||||
о, |
Fc/4, |
Fc/20, |
Ус. |
(Fo-Fc)/2, |
FO. |
(Fb-Fo)/2, |
FL, |
2Рь, |
4F,., |
||
Гц |
Гц |
Гц |
Гц |
Гц |
Гц |
Гц |
Гц |
Гц |
Гц |
||
F, Гц |
расч. |
|
|
|
|
|
|
|
|
|
|
I. A
|
расч. |
|
|
|
|
|
|
|
|
|
|
эксп. |
|
|
|
|
|
|
|
|
|
|
|
UR, B |
расч. |
|
|
|
|
|
|
|
|
|
|
эксп. |
|
|
|
|
|
|
|
|
|
|
|
UL,B |
расч. |
|
|
|
|
|
|
|
|
|
|
эксп. |
|
|
|
|
|
|
|
|
|
|
|
Uc. B |
расч. |
|
|
|
|
|
|
|
|
|
|
эксп. |
|
|
|
|
|
|
|
|
|
|
|
ф, град |
расч. |
|
|
|
|
|
|
|
|
|
|
эксп. |
|
|
|
|
|
|
|
|
|
|
|
Фь,град |
расч. |
|
|
|
|
|
|
|
|
|
|
эксп. |
|
|
|
|
|
|
|
|
|
|
|
фс-, град |
расч. |
|
|
|
|
|
|
|
|
|
|
эксп. |
|
|
|
|
|
|
|
|
|
|
Амплитудно-частотные хаоактевистики
Фазочастотные характеристики
Эксперимент 3. Измерение частотных характеристик параллельного колебательного контура для трех частот с помощью осциллографа. а) Измерение действующих значений и фаз токов через элементы, при резонансной частоте.
Расчет проводимостей
Расчет фаз тока по результатам измерений
б) Измерение действующих значений и фаз тока через элементы, при частоте F=0.5F,
Расчет проводимостей
Расчет фаз тока по результатам измерений
в) Измерение действующих значений и фаз токов через элементы при частоте F=2Fc.
Расчет проводимостей
Действующие значения токов
Расчет фаз тока по результатам измерений
Векторные диаграммы
Эксперимент 4. Частотные характеристики параллельного колебательного контура. Таблица 5.2
Параметры
|
Значения параметров
|
||||||||||
Частота, Гц
|
|||||||||||
о, |
Fc/4, |
Fc/20, |
FC. |
(Fo-Fc)/2, |
FO, |
(FL-Fo)/2, |
FL, |
2FL, |
4FL, |
||
Гц |
Гц |
Гц |
Гц |
Гц |
Гц |
Гц |
Гц |
Гц |
Гц |
||
F,Гц |
расч. |
|
|
|
|
|
|
|
|
|
|
I,A |
расч. |
|
|
|
|
|
|
|
|
|
|
эксп. |
|
|
|
|
|
|
|
|
|
|
|
UR,B |
расч. |
|
|
|
|
|
|
|
|
|
|
эксп. |
|
|
|
|
|
|
|
|
|
|
|
UL,B
|
расч. |
|
|
|
|
|
|
|
|
|
|
эксп. |
|
|
|
|
|
|
|
|
|
|
|
Uc,B
|
расч. |
|
|
|
|
|
|
|
|
|
|
эксп. |
|
|
|
|
|
|
|
|
|
|
|
ФR град |
расч. |
|
|
|
|
|
|
|
|
|
|
эксп. |
|
|
|
|
|
|
|
|
|
|
|
ФL град |
расч. |
|
|
|
|
|
|
|
|
|
|
эксп. |
|
|
|
|
|
|
|
|
|
|
|
Фс. град |
расч. |
|
|
|
|
|
|
|
|
|
|
эксп. |
|
|
|
|
|
|
|
|
|
|
Амплитудно-частотные характеристики
Фазочастотные характеристики
Релятивисты и позитивисты утверждают, что "мысленный эксперимент" весьма полезный интрумент для проверки теорий (также возникающих в нашем уме) на непротиворечивость. В этом они обманывают людей, так как любая проверка может осуществляться только независимым от объекта проверки источником. Сам заявитель гипотезы не может быть проверкой своего же заявления, так как причина самого этого заявления есть отсутствие видимых для заявителя противоречий в заявлении.
Это мы видим на примере СТО и ОТО, превратившихся в своеобразный вид религии, управляющей наукой и общественным мнением. Никакое количество фактов, противоречащих им, не может преодолеть формулу Эйнштейна: "Если факт не соответствует теории - измените факт" (В другом варианте " - Факт не соответствует теории? - Тем хуже для факта").
Максимально, на что может претендовать "мысленный эксперимент" - это только на внутреннюю непротиворечивость гипотезы в рамках собственной, часто отнюдь не истинной логики заявителя. Соответсвие практике это не проверяет. Настоящая проверка может состояться только в действительном физическом эксперименте.
Эксперимент на то и эксперимент, что он есть не изощрение мысли, а проверка мысли. Непротиворечивая внутри себя мысль не может сама себя проверить. Это доказано Куртом Гёделем.
Понятие "мысленный эксперимент" придумано специально спекулянтами - релятивистами для шулерской подмены реальной проверки мысли на практике (эксперимента) своим "честным словом". Подробнее читайте в FAQ по эфирной физике.