к оглавлению

Упражнения

Анализ процессов в сложных схемах

Методические указания Методику расчета и экспериментального исследования процессов в сложных цепях с двумя реактивными элементами рассмотрим на конкретном примере, проведя расчет классическим и операторным методами и сравнив результаты расчета и эксперимента. Задача 1. Переходный процесс при мгновенном изменении параметров цепи.

Рассчитать напряжение на конденсаторе Uc(t) и ток ic(t) в катушке в схеме, приведенной на рис. 8.6 (файл с8_06) при закорачивании ключом [Space] сопротивления R2. При расчете принять, что переключение происходит из установившегося режима.

Electronics Workbench V 5.12

Расчет классическим методом Шаг 1. Нахождение корней характеристического уравнения. Характеристическое уравнение имеет вид:

Electronics Workbench V 5.12

Шаг 2. Определение констант в уравнении для тока через катушку. Поскольку корни характеристического уравнения комплексно-сопряженные, переходной процесс носит колебательный характер и, следовательно, ток через индуктивность iL(t) выражается следующей зависимостью:

Electronics Workbench V 5.12 (8.10)

Уравнение (8.10) содержит две константы, для определения которых необходимо решить систему двух уравнений, одним из которых является само уравнение (8.10). Вторым уравнением, содержащим те же константы, является уравнение для производной тока через индуктивность:

Electronics Workbench V 5.12 (8.11)

Для определения указанных констант при классическом методе расчета используются уравнения (8.10) и (8.11). Рассмотрим порядок вычисления значений этих выражений в момент t = 0+. Закон коммутации для катушки индуктивности формулируется в следующем виде: iL(0+)=iL(0-). (8.12) Подставляя t=0 в уравнение (8.10), получим уравнение, описывающее состояние схемы до коммутации:

Electronics Workbench V 5.12 (8.13)

Значение iL(0-) является установившимся значением тока при разомкнутом ключе. Схему замещения для определения этого тока получим, заменив катушку индуктивности в исходной схеме проводником, а конденсатор - разрывом (рис. 8.7). Из этой схемы находим ток до момента коммутации: iL(0-)= 125 В/500 Ом = 0.25 А. Ток Iуст является установившимся значением тока при замкнутом ключе. Схему замещения для определения этого тока получим, исключив из схемы рис. 8.7 сопротивление R2, закороченное ключом (рис. 8.8). Из схемы находим ток в установившемся режиме после коммутации: Iуст= 125 В / 300 Ом = 0.417 А. Подставляя вычисленные значения iL(0-) и Iуст в (8.13), получим первое уравнение для вычисления констант: IcвSinфi =-0.167. (8.14) Рассмотрим теперь уравнение для производной тока в момент времени t(0+). Подставив t= 0 в уравнение (8.11), получим следующее выражение:

Electronics Workbench V 5.12 (8.15)

где правая часть получена из компонентного уравнения:

Electronics Workbench V 5.12

Значение UL(0+) не регламентируется непосредственно законами коммутации и для его вычисления нужно использовать оба закона коммутации наряду со вторым законом Кирхгофа. Рассмотрим, как изменяются напряжения на отдельных компонентах

Electronics Workbench V 5.12

Electronics Workbench V 5.12

схемы при коммутации. Напряжение на идеальном источнике питания не зависит от состояния схемы; напряжение на сопротивлении R1 измениться не может, поскольку не изменяется ток через индуктивность; напряжение на конденсаторе С также не может измениться по закону коммутации. В то же время напряжение на ключе, равное в момент времени t(0—) напряжению на сопротивлении R2, падает после коммутации до 0. Чтобы второй закон Кирхгофа выполнялся для момента t=(0+), это напряжение должно появиться на катушке индуктивности. Подставляя значение этого напряжения в (8.15), получим второе уравнение для вычисления констант:

Electronics Workbench V 5.12 (8.16)

Далее решаем систему из двух уравнений (8.14) и (8.16). Из уравнения (8.14) получим:

Electronics Workbench V 5.12

Подставив это выражение в (8.16), определим:

Electronics Workbench V 5.12

Ток через катушку индуктивности после подстановки констант в (8.10) вычисляется из выражения:

Electronics Workbench V 5.12 (8.17)

Шаг 3. Определение констант в уравнении для напряжения на конденсаторе. Результат получим, действуя аналогично изложенному в шаге 2: Напряжение на конденсаторе при колебательном переходном процессе выражается зави симостью:

Electronics Workbench V 5.12 (8.18)

Уравнение для производной напряжения на конденсаторе:

Electronics Workbench V 5.12 (8.19)

Согласно закону коммутации:

Electronics Workbench V 5.12 (8.20)

Величина Uc(0+) является установившимся значением напряжения на конденсаторе при разомкнутом ключе. Его можно рассчитать из схемы замещения, представленной на рис. 8.7. Uc(0-)= 125-250/500 = 62.5 В.

Напряжение UycT является установившимся значением напряжения на конденсаторе при замкнутом ключе. Его также можно получить из схемы замещения, представленной на рис. 8.8. Из схемы получим:

Electronics Workbench V 5.12

Подставляя вычисленные значения в (8.18), получим для момента t = 0:

Electronics Workbench V 5.12 (8.21)

Производную напряжения для момента t(0+) можно вычислить подставив в (8.19) значение t = 0:

Electronics Workbench V 5.12 (8.22)

где правая часть получена из компонентного уравнения:

Electronics Workbench V 5.12 s

Значение ic(0+) не регламентируется непосредственно законами коммутации и для его вычисления нужно использовать оба закона коммутации наряду с первым законом Кирхгофа. Рассмотрим, как изменяются токи в ветвях, подходящих к узлу 1 на рис. 8.6 при коммутации. По закону коммутации ток через катушку не может измениться; по другому закону коммутации не может измениться и напряжение на конденсаторе (равное напряжению на резисторе Rз), и, соответственно, ток через Rз. Поэтому неизменным остается и ток через конденсатор, который до переключения ключа в установившемся режиме был равен нулю. Подставляя значение этого тока в уравнение (8.22) получаем:

Electronics Workbench V 5.12 (8.23)

Из уравнения (8.21) получим:

Electronics Workbench V 5.12

Теперь из уравнения (8.23) можно непосредственно вычислить угол, а затем и Ucв-

Electronics Workbench V 5.12

Напряжение на конденсаторе после подстановки констант вычисляется из выражения:

Electronics Workbench V 5.12 (8.24)

Расчет операторным методом Шаг 1. Составление операторной схемы замещения. При составлении операторной схемы замещения (рис. 8.9) элементы замещаются их операторными изображениями: индуктивность заменяется сопротивлением pL и источником ЭДС с напряжением L-iL/O-), отображающим наличие начального тока в катушке, емкость - сопротивлением 1/рс и источником ЭДС с напряжением Uc(0-)/p, отображающим начальное напряжение на конденсаторе, источник постоянной ЭДС - изображением Е/р, изображение резистора при переходе к операторной схеме совпадает с оригиналом. Начальные условия определяются так же, как и при расчете классическим методом, начальные значения тока через индуктивность и напряжения на емкости равны соответственно:

Electronics Workbench V 5.12

Шаг 2. Определение изображения тока в индуктивности. Найдем изображение тока методом эквивалентного генератора. Замещая эквивалентным генератором схему без левой ветви, найдем:

Electronics Workbench V 5.12

С учетом параметров эквивалентного генератора изображение тока в левой ветви:

Electronics Workbench V 5.12

Подставляя значения Uэк(p) и Zэк(p). получим:

Electronics Workbench V 5.12

Electronics Workbench V 5.12

Подставляя значения параметров в Fl(p) и F2(p), получим:

Electronics Workbench V 5.12

Шаг 3. Определение оригинала iL(t) по теореме разложения. В соответствии с теоремой разложения при колебательном характере процесса

Electronics Workbench V 5.12 (8.25)

Подставляя в формулу (8.25) вычисленные выше значения F1(p) и F3(p) и производя преобразования, получим:

Electronics Workbench V 5.12 (8.25)

Корни характеристического уравнения F3(p)=0:

Electronics Workbench V 5.12

Вычисляем производную Fз'(p):

Electronics Workbench V 5.12

Определим F1(p1):

Electronics Workbench V 5.12

и, подставив полученное значение в (8.25), определим iL(t):

Electronics Workbench V 5.12

Аналогично можно определить и величину Uc(t). Экспериментальная проверка Для экспериментального определения величин Uc(t) и iL(t) можно воспользоваться увеличенной моделью осциллографа (рис. 8.10). Установив первый курсор в начале переходного процесса, а второй курсор на отметке текущего времени (800 мкс на рис. 8.10). С табло при этом считываем значения, соответствующие этому моменту времени (см. табл. 8.1). Таблица 8.1. Сравнение результатов расчета и эксперимента

t, мксек

0

200

400

600

800

1000

1200

1400

1600

1800

iL(t),расчет

0.25

0.806

0.776

0.578

0.431

0.378

0.382

0.401

0.416

0421

iL(t),экcnep.

0.25

0.803

0.778

0.580

0.432

0.378

0.381

0.401

0.415

0.421

Uc(t),расчет

62.5

75.525

94.56

105.5

108.13

106.8

104.9

103.8

103.6

103.7

Uc(t),экcnep.

62.5

75.27

94.61

105.5

108.3

107.0

105.1

104.0

103.7

103.9


Electronics Workbench V 5.12

Задачи для самостоятельного решения Задачи с 1 по 6 и с 24 по 26 приведены в книге, остальные задачи (с 7 по 23) вы сможете найти на прилагающихся к книге дискетах. 1. Схемы с конденсатором и катушкой индуктивности

Задача 1 (с8_11) Рассчитайте временные зависимости напряжения на конденсаторе С и тока через катушку индуктивности L при замыкании ключа [Space] и нулевых начальных условиях. Постройте графики соответствующих временных зависимостей. Результаты расчета проверьте с помощью Electronics Workbench.

Electronics Workbench V 5.12

Задача 2 (с8_12) Рассчитайте временные зависимости напряжения на сопротивлении R и тока через катушку индуктивности L при замыкании ключа [Space] и нулевых начальных условиях. Постройте графики соответствующих временных зависимостей. Результаты расчета проверьте с помощью Electronics Workbench.

Electronics Workbench V 5.12

Задача 3 (с8_13) Рассчитайте временные зависимости напряжения на конденсаторе С и тока через катушку индуктивности L при размыкании ключа [Space] и постройте графики соответствующих временных зависимостей. Результаты расчета проверьте с помощью Electronics Workbench.

Electronics Workbench V 5.12

Задача 4 (с8_14) Рассчитайте временные зависимости напряжения на конденсаторе С и тока через катушку индуктивности L при замыкании ключа [Space] и нулевых начальных условиях. Постройте графики соответствующих временных зависимостей. Результаты расчета проверьте с помощью Electronics Workbench.

Electronics Workbench V 5.12

Задача 5 (с8_15) Рассчитайте временные зависимости напряжения на конденсаторе С и тока через катушку индуктивности L при замыкании ключа [Space] и нулевых начальных условиях. Постройте графики соответствующих временных зависимостей. Результаты расчета проверьте с помощью Electronics Workbench.

Electronics Workbench V 5.12

Задача 6 (с8_16) Рассчитайте временные зависимости напряжения на конденсаторе С и тока через катушку индуктивности L при замыкании ключа [Space] и нулевых начальных условиях. Постройте графики соответствующих временных зависимостей. Результаты расчета проверьте с помощью Electronics Workbench.

Electronics Workbench V 5.12

2. Переходные процессы при некорректных включениях

Задача 24 (с8_34) Рассчитайте временные зависимости напряжения на обоих конденсаторах и тока через резистор R при замыкании ключа [Space]. Постройте графики соответствующих временных зависимостей. Результаты расчета проверьте с помощью Electronics Workbench.

Electronics Workbench V 5.12

Задача 25 (с8_35) Рассчитайте временные зависимости токов через катушки индуктивности L1 и L2 при размыкании ключа [Space]. Постройте графики соответствующих временных зависимостей. Результаты расчета проверьте с помощью Electronics Workbench.

Electronics Workbench V 5.12

Задача 26 (с8_36) Рассчитайте временные зависимости токов через катушки индуктивности L1 и L2 при размыкании ключа [Space]. Постройте графики соответствующих временных зависимостей. Результаты расчета проверьте с помощью Electronics Workbench.

Electronics Workbench V 5.12

к оглавлению


Знаете ли Вы, что "гравитационное линзирование" якобы наблюдаемое вблизи далеких галактик (но не в масштабе звезд, где оно должно быть по формулам ОТО!), на самом деле является термическим линзированием, связанным с изменениями плотности эфира от нагрева мириадами звезд. Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
Bourabai Research - Технологии XXI века Bourabai Research Institution