к оглавлению

Эксперименты. Полупроводниковые диоды

Цель 1. Исследование напряжения и тока диода при прямом и обратном смещении р-п перехода. 2. Построение и исследование вольтамперной характеристики (ВАХ) для полупроводникового диода. 3. Исследование сопротивления диода при прямом и обратном смещении по вольтамперной характеристике. 4. Анализ сопротивления диода (прямое и обратное смещение) на переменном и постоянном токе. 5. Измерение напряжения изгиба вольтамперной характеристики.

Electronics Workbench V 5.12

Краткие сведения из теории Одним из достоинств Elecrtronics Workbench является возможность смоделировать ситуации, возникающие при самых различных уровнях приборной оснащенности исследователя, и освоить методики измерения, соответствующие этим уровням. Рассмотрим эти ситуации на примере измерения вольтамперной характеристики полупроводникового диода. Начинающий радиолюбитель может иметь всего лишь один универсальный прибор - муль-тиметр (который мы привыкли называть тестером), но и в этом случае можно снять вольтам-перную характеристику (ВАХ) диода или любого другого нелинейного двухполюсника. Проще всего в этом случае измерять напряжение на диоде в схеме рис. 9.1, подсоединяя к диоду через резистор источники напряжения различной величины. Ток диода при этом можно вычислять из выражения: 1пр = (Е - Unp)/R, (9.1) где1пр - ток диода в прямом направлении, Е - напряжение источника питания, Unp - напряжение на диоде в прямом направлении. Изменив полярность включения диода в той же схеме рис. 9.1, можно снять ВАХ диода по той же методике и в обратном направлении 1ов = (Е - Uоб)/R,(9.2) где Iов - ток диода в обратном направлении, UOB - напряжение на диоде в обратном направлении.

Точность при таких измерениях оставляет желать лучшего из-за разброса сопротивлений у резисторов одного номинала. И если Вы хотите получить более точную характеристику, используя только один мультиметр, необходимо сначала измерить напряжение в схеме рис. 9.1, а затем ток в схеме рис. 9.2. При этом можно пользоваться по-прежнему только мультиметром, подключая его то как вольтметр, то как амперметр. Гораздо быстрее можно выполнить эту работу, если у Вас имеется и вольтметр и амперметр. Тогда, включив их по схеме рис. 9.3, можно сразу видеть ток и напряжение на табло этих приборов. Вольтамперная характеристика (ВАХ) может быть получена путем измерения напряжений на диоде при протекании различных токов за счет изменения напряжения источника питания Vs. И наконец, наиболее быстро и удобно можно исследовать ВАХ, непосредственно наблюдая ее на экране осциллографа (рис. 9.4). При таком подключении координата точки по горизонтальной оси осциллографа будет пропорциональна напряжению, а по вертикальной - току через диод. Поскольку напряжение в вольтах на резисторе 1 Ом численно равно току через диод в амперах (I=U/R=U/1=U), по вертикальной оси можно непосредственно считывать значения тока. Если на осциллографе выбран режим В/А, то величина, пропорциональная току через диод (канал В), будет откладываться по вертикальной оси, а напряжение (канал А) - по горизонтальной. Это и позволит получить вольтамперную характеристику непосредственно на экране осциллографа.

Electronics Workbench V 5.12

Electronics Workbench V 5.12

Electronics Workbench V 5.12 При получении ВАХ диода с помощью осциллографа на канал А вместо точного напряжения на диоде подается сумма напряжения диода и напряжения на резисторе 1 Ом, Ошибка из-за этого будет мала, так как падение напряжения на резисторе будет значительно меньше, чем напряжение на диоде. Для более точного измерения напряжения можно измерять ток с помощью датчика тока (см. приложение 1). Из-за нелинейности диода его нельзя характеризовать величиной сопротивления, как линейный резистор. Отношение напряжения на диоде к току через него U/I, называемое статическим сопротивлением, зависит от величины тока. В ряде

Electronics Workbench V 5.12

Electronics Workbench V 5.12

применений на существенную постоянную составляющую тока диода накладывается небольшая переменная составляющая (обычно при этом говорят, что элемент работает в режиме малых сигналов). В этом случае интерес представляет дифференциальное (или динамическое) сопротивление dU/dI. Величина динамического сопротивления зависит от постоянной составляющей тока диода, определяющей рабочую точку на характеристике.

Порядок проведения экспериментов

Эксперимент 1. Измерение напряжения и вычисление тока через диод. Откройте файл с9_011 (рис. 9.1) и включите схему. Мультиметр покажет напряжение на диоде Unp при прямом смещении. Переверните диод и снова запустите схему. Теперь мульти-метр покажет напряжение на диоде Uоб при обратном смещении. Запишите показания в раздел "Результаты экспериментов". Вычислите ток диода при прямом 1пр и обратном 1ов смещении согласно формулам (9.1) и (9.2).

Эксперимент 2. Измерение тока. Откройте файл с9_012 (рис. 9.2) и включите схему. Мультиметр покажет ток диода 1пр при прямом смещении. Переверните диод и снова запустите схему. Теперь Мультиметр покажет ток 1ов диода при обратном смещении. Запишите показания в раздел "Результаты экспериментов".

Эксперимент 3. Измерение статического сопротивления диода. Измерьте сопротивление диода в прямом и обратном подключении, используя Мультиметр в режиме омметра. Малые значения сопротивления соответствуют прямому подключению. Показания прямого сопротивления различны для разных шкал омметра. Почему?

Эксперимент 4. Снятие вольтамперной характеристики диода. а). Прямая ветвь ВАХ. Отройте файл с9_013 (рис. 9.3). Включите схему. Последовательно устанавливая значения ЭДС источника равными 5 В, 4 В, 3 В, 2 В, 1 В, 0.5 В, О В запишите значения напряжения Unp и тока 1пр диода в таблицу а) раздела "Результаты экспериментов". б). Обратная ветвь ВАХ. Переверните диод. Последовательно устанавливая значения ЭДС источника равными О В, 5 В, 10 В, 15 В запишите значения тока 1ов и напряжения UQB в таблицу б) раздела "Результаты экспериментов". в). По полученным данным постройте графики 1пр (Unp) и IOB (Uos). г). Постройте касательную к графику прямой ветви ВАХ при 1пр = 4 мА и оцените дифференциальное сопротивление диода по наклону касательной. Проделайте ту же процедуру для 1пр = 0.4 мА и 1пр =0.2 мА. Ответы запишите в раздел "Результаты экспериментов". д). Аналогично пункту г) оцените дифференциальное сопротивление диода при обратном напряжении 5 В и запишите экспериментальные данные в раздел "Результаты экспериментов". е). Вычислите сопротивление диода на постоянном токе 1пр = 4 мА по формуле Rcr= Unp/Inp и занесите результат в раздел "Результаты экспериментов". ж). Определите напряжение изгиба. Результаты занесите в раздел "Результаты экспериментов". Напряжение изгиба определяется из вольтамперной характеристики диода, смещенного в прямом направлении, для точки, где характеристика претерпевает резкий излом.

Эксперимент 5. Получение ВАХ на экране осциллографа. Откройте файл с9_014. (рис. 9.4). Включите схему. На ВАХ, появившейся на экране осциллографа, по горизонтальной оси считывается напряжение на диоде в милливольтах (канал А), а по вертикальной - ток в миллиамперах (канал В, 1 мВ соответствует 1 мА). Обратите внимание на изгиб ВАХ. Измерьте и запишите в раздел "Результаты экспериментов" величину напряжения изгиба.

Результаты экспериментов Эксперимент 1. Измерение напряжения и вычисление тока через диод. Измерьте и запишите напряжения на диоде:

Electronics Workbench V 5.12

Эксперимент 2. Измерение тока. Измерьте и запишите ток при прямом и обратном смещении

Electronics Workbench V 5.12

Эксперимент 3. Измерение статического сопротивления диода.

Electronics Workbench V 5.12

Эксперимент 4. Снятие вольтамперной характеристики диода. Вычислите и запишите токи и напряжения.

а). Прямая ветвь ВАХ.

Е,В

Unp, мВ

ТПР мА

5

4

3

2

1

0.5

0


б). Обратная ветвь ВАХ.

Е,В

UOB. мВ

IOB, мА

0

5

10

15


в). Построение графиков ВАХ. Прямая ветвь ВАХ

Electronics Workbench V 5.12

Обратная ветвь ВАХ

Electronics Workbench V 5.12

г). Дифференциальное сопротивление диода при прямом смещении, вычисленное по ВАХ.

Electronics Workbench V 5.12

д). Дифференциальное сопротивление диода при обратном смещении, вычисленное по ВАХ.

Electronics Workbench V 5.12

Эксперимент 5. Получение ВАХ на экране осциллографа. Напряжение изгиба, определенное из ВАХ, полученной при помощи осциллографа.

Electronics Workbench V 5.12

Electronics Workbench V 5.12

Вопросы

1. Сравните напряжения на диоде при прямом и обратном смещении по порядку величин. Почему они различны?

2. Сравнимы ли измеренные значения тока при прямом смещении с вычисленными значениями?

3. Сравнимы ли измеренные значения тока при обратном смещении с вычисленными значениями?

4. Сравните токи через диод при прямом и обратном смещении по порядку величин. Почему они различны?

5. Что такое ток насыщения диода?

6. Намного ли отличаются прямое и обратное сопротивления диода при измерении их мультиметром в режиме омметра? Можно ли по этим измерениям судить об исправности диода?

7. Существует ли различие между величинами сопротивления диода на переменном и постоянном токе?

8. Совпадают ли точки изгиба ВАХ, полученные с помощью осциллографа и построенные по результатам вычислений?

к оглавлению


Знаете ли Вы, в чем ложность понятия "физический вакуум"?

Физический вакуум - понятие релятивистской квантовой физики, под ним там понимают низшее (основное) энергетическое состояние квантованного поля, обладающее нулевыми импульсом, моментом импульса и другими квантовыми числами. Физическим вакуумом релятивистские теоретики называют полностью лишённое вещества пространство, заполненное неизмеряемым, а значит, лишь воображаемым полем. Такое состояние по мнению релятивистов не является абсолютной пустотой, но пространством, заполненным некими фантомными (виртуальными) частицами. Релятивистская квантовая теория поля утверждает, что, в согласии с принципом неопределённости Гейзенберга, в физическом вакууме постоянно рождаются и исчезают виртуальные, то есть кажущиеся (кому кажущиеся?), частицы: происходят так называемые нулевые колебания полей. Виртуальные частицы физического вакуума, а следовательно, он сам, по определению не имеют системы отсчета, так как в противном случае нарушался бы принцип относительности Эйнштейна, на котором основывается теория относительности (то есть стала бы возможной абсолютная система измерения с отсчетом от частиц физического вакуума, что в свою очередь однозначно опровергло бы принцип относительности, на котором постороена СТО). Таким образом, физический вакуум и его частицы не есть элементы физического мира, но лишь элементы теории относительности, которые существуют не в реальном мире, но лишь в релятивистских формулах, нарушая при этом принцип причинности (возникают и исчезают беспричинно), принцип объективности (виртуальные частицы можно считать в зависимсоти от желания теоретика либо существующими, либо не существующими), принцип фактической измеримости (не наблюдаемы, не имеют своей ИСО).

Когда тот или иной физик использует понятие "физический вакуум", он либо не понимает абсурдности этого термина, либо лукавит, являясь скрытым или явным приверженцем релятивистской идеологии.

Понять абсурдность этого понятия легче всего обратившись к истокам его возникновения. Рождено оно было Полем Дираком в 1930-х, когда стало ясно, что отрицание эфира в чистом виде, как это делал великий математик, но посредственный физик Анри Пуанкаре, уже нельзя. Слишком много фактов противоречит этому.

Для защиты релятивизма Поль Дирак ввел афизическое и алогичное понятие отрицательной энергии, а затем и существование "моря" двух компенсирующих друг друга энергий в вакууме - положительной и отрицательной, а также "моря" компенсирующих друг друга частиц - виртуальных (то есть кажущихся) электронов и позитронов в вакууме.

Однако такая постановка является внутренне противоречивой (виртуальные частицы ненаблюдаемы и их по произволу можно считать в одном случае отсутствующими, а в другом - присутствующими) и противоречащей релятивизму (то есть отрицанию эфира, так как при наличии таких частиц в вакууме релятивизм уже просто невозможен). Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
Bourabai Research - Технологии XXI века Bourabai Research Institution