к оглавлению

Маломощные выпрямители

Методические указания

Обычно выпрямители однофазного тока выполняются по двухполупериодной схеме. К типовым схемам двухполу периодного выпрямления относятся: 1. Схема с отводом от средней точки вторичной обмотки трансформатора. 2. Мостовая схема. Схема с отводом от средней точки и ее работа на активную нагрузку Схема приведена на рис. 9.38.

Electronics Workbench V 5.12

На рис. 9.39 показаны следующие временные диаграммы, отражающие работу схемы на активную нагрузку: а). Напряжение и токи во вторичных обмотках трансформатора. б). Напряжение и ток в нагрузке. в). Ток диода. г). Обратное напряжение на диоде. д). Напряжение и ток в первичной обмотке. Среднее значение выпрямленного напряжения при идеальных диодах и трансформаторе:

Electronics Workbench V 5.12 (9.35)

где Е2 — действующее значение напряжения на вторичной полуобмотке трансформатора,

Electronics Workbench V 5.12

,откуда

Electronics Workbench V 5.12 (9.36)

Среднее значение выпрямленного тока в нагрузке:

Electronics Workbench V 5.12 (9.37)

Electronics Workbench V 5.12

По условию симметрии среднее значение тока через диод:

Electronics Workbench V 5.12 (9.38)

Максимальное значение тока через диод:

Electronics Workbench V 5.12 (9.39)

В проводящую часть периода напряжение на диоде равно нулю (в предположении, что диоды идеальны). В непроводящую часть периода к диоду приложено двойное фазовое напряжение. Поэтому максимальное значение обратного напряжения, приложенного к диоду, равно двойной амплитуде напряжения на вторичной полуобмотке:

Electronics Workbench V 5.12 (9.40)

Переходя к определению параметров трансформатора, находим вначале действующее значение тока через диод:

Electronics Workbench V 5.12 (9.41)

Зависимость действующего значения первичного тока от среднего значения выпрямленного тока с учетом коэффициента трансформации Rтр имеет вид:

Electronics Workbench V 5.12 (9.42)

где Ктр = W1/W2, W1 и W2 - число витков первичной обмотки и вторичной полуобмотки трансформатора соответственно. В рассматриваемой схеме расчетная мощность вторичных обмоток трансформатора:

Electronics Workbench V 5.12 (9.43)

Расчетная мощность первичной обмотки:

Electronics Workbench V 5.12 (9.44)

Расчетная мощность трансформатора:

Electronics Workbench V 5.12 (9.45)

2. Мостовая схема при активной нагрузке. Схема приведена на рис. 9.40. На рис. 9.41 показаны временные диаграммы, отражающие работу схемы диодного моста на активную нагрузку: а). Напряжение и ток во вторичных обмотках трансформатора. б). Напряжение и ток в нагрузке. в). Ток диода. г). Обратное напряжение на диоде. д). Напряжение и ток в первичной обмотке.

Electronics Workbench V 5.12

Средние значения напряжения и тока такие же, как в предыдущей схеме. В мостовой схеме обратное напряжение на диоде, если пренебречь прямым падением напряжения на нем, определяется напряжением на вторичной обмотке трансформатора:

Electronics Workbench V 5.12 (9.46)

Из формул (9.40) и (9.46) следует, что обратное напряжение в мостовой схеме при том же значении выпрямленного напряжения Ua в 2 раза меньше, чем в схеме с отводом от средней точки. Формы токов первичной и вторичной обмоток одинаковы. Поэтому действующее значение тока первичной обмотки связано со средним значением тока в диоде тем же коэффициентом, что и в схеме с отводом от средней точки. Расчетные мощности в обоих обмотках также равны. S„=S,=S,=1.23P,. (9.47) При экспериментальной проверке в Electronics Workbench используется модел! диода "ideal", в которой прямое падение напряжения Unp на диоде не равно нулю, а составляет приближенно 0.8 В. Поэтому для точного расчета среднего значения выходного напряжения необходимо использовать вместо формулы (9.35) следующее выражение:

Electronics Workbench V 5.12 (9.48)

В связи с этим необходимо скорректировать все остальные расчетные формулы. Однако погрешность, вызванная неидеальностью диода не превышает 5%. Это вполне удовлетворительно для проведения инженерных расчетов.

Electronics Workbench V 5.12

Применение фильтров для сглаживания пульсации в нагрузке Для сглаживания пульсации напряжения в нагрузке в схему выпрямителя включаются реактивные элементы, выполняющие роль фильтров. На. рис, 9,42 приведены простейшие схемы фильтров: индуктивного (рис. 9.42а), емкостного (рис. 9.42в), Г-образного (рис. 9.42г), а также диаграммы напряжений и токов на активной нагрузке (рис. 9.426).

Electronics Workbench V 5.12

Выпрямленное напряжение содержит постоянную и переменную составляющую. При достаточно большой величине емкости и индуктивности фильтров на их реактивных сопротивлениях падает большая часть переменной составляющей напряжения (рис. 9.426}. Индуктивность в сочетании с конденсатором образует Г-образный фильтр с лучшим качеством фильтрации напряжения. В однополупериодных схемах частота пульсации f1 выходного напряжения равна частоте питающей сети f, в двухполупериодных схемах она вдвое превосходит частоту питающей сети (fi = 2f). Выходное напряжение выпрямителя представляет собой сумму гармоник, кратных частоте сети. В двухполупериодном выпрямителе наибольшую амплитуду имеет первая (основная) гармоника, равная удвоенной частоте сети. Применительно к ней и ведется расчет фильтров. Отношение амплитуды первой гармоники U11max выпрямленного напряжения к среднему значению выпрямленного напряжения Ud принято называть коэффициентом пульсации q1. Для напряжения на выходе двухполупериодного выпрямителя, работающего на активную нагрузку (без фильтра), этот коэффициент равен: q1-U11max/Ud=2/3. (9.49) Допускаемый коэффициент пульсации на выходе фильтра: q2=U12max/Ud2 (9.50) где Ud2 - среднее значение напряжения на выходе фильтра, U12max- амплитуда первой гармоники этого напряжения.

Отношение коэффициентов пульсации на входе и выходе фильтра называется коэффи циентом сглаживания:

Electronics Workbench V 5.12 (9.51)

При применении индуктивного фильтра (рис. 9.42а) первая гармоника переменной составляющей напряжения на выходе выпрямителя распределяется между индуктивным сопротивлением фильтра XL и нагрузочным сопротивлением Rnp. Когда XL >>Rnp, пульсации выпрямленного напряжения на сопротивлении нагрузки Rnp малы (рис. 9.446). В двухполу периодной схеме коэффициент сглаживания равен:

Electronics Workbench V 5.12 (9.52)

Зная коэффициент пульсации и сопротивление нагрузки Rnp, величину индуктивности L можно найти по формуле:

Electronics Workbench V 5.12 (9.53)

Для больших значений коэффициентов сглаживания s емкость конденсатора С или индуктивность катушки L простейших фильтров будут велики, что приведет к очень большим габаритам фильтра. В этом случае рационально применить Г-образный фильтр (рис. 9.44г). Суммарный объем конденсатора и катушки индуктивности в этом случае получается меньше, чем объем одного конденсатора в емкостном фильтре или объем катушки в индуктивном фильтре. Для расчета Г-образного фильтра используется выражение:

Electronics Workbench V 5.12 (9.54)

где w - частота первой гармоники выпрямленного напряжения, L и С определяются из выражения: wL=l/wC. Расчет схем выпрямителей с фильтром на выходе В предлагаемых задачах провести расчет схемы двухполупериодного выпрямителя с отводом от средней точки, элементы которого имеют различные параметры для каждой задачи. Задачи сформулированы таким образом, чтобы продемонстрировать различия в процессах, происходящих в схеме, для случаев подключения активной нагрузки без фильтра и через индуктивный фильтр, обеспечивающий высокий коэффициент сглаживания. -В этих задачах читатель по существу впервые сталкивается с необходимостью планирования и проведения экспериментов в реальных схемах. Этот процесс потребует от Вас определенного времени и внимания для получения правильного результата и его последующего анализа. Рассмотрим пример, в котором проводится расчет и экспериментальная проверка результата. Задача 1 (файл с9_200) Дано: Двухполупериодный выпрямитель нагружен на сопротивление R. Частота питающей сети 50 Гц (рис. 9.43). Проведены 3 опыта: 1. Нагрузка подключена непосредственно к выпрямителю. В этом случае среднее значение тока в диодах отличается от действующего значения тока на 0.2 А.

2. Нагрузка подключена к выпрямителю через индуктивный фильтр. Индуктивность фильтра 0.5 Гн, коэффициент сглаживания — 10. 3. Нагрузка подключена к выпрямителю через индуктивный фильтр. Индуктивность фильтра настолько велика, что пульсациями тока нагрузки можно пренебречь. Найти: максимальное обратное напряжение на диодах, величину выделяемой в нагрузке активной мощности для 1-го и 3-го опытов. Расчет: 1.Из первого опыта можно определить среднее значение тока Iдр в нагрузке. Из формул (9.38,9.41)следует:

Electronics Workbench V 5.12

2. Из второго опыта найдем сопротивление нагрузки. Преобразуя формулу (9.52), получим:

Electronics Workbench V 5.12

3. Воспользовавшись соотношением (9.35), получим действующее значение напряжения на вторичной полуобмотке трансформатора:

Electronics Workbench V 5.12

4. Обратное напряжение на диодах определяется по формуле 9.40: Ubmax=n0.9U2 = 68.4 В 5. Мощность, выделяемая в нагрузке в первом опыте, определяется действующим значением напряжения на вторичной полуобмотке'трансформатора:

Electronics Workbench V 5.12

6. Мощность, выделяемая в нагрузке во втором опыте, определяется средним значением напряжения на нагрузке:

Electronics Workbench V 5.12

Экспериментальная проверка результатов расчета Показания приборов в опыте 1 представлены нарис. 9.43. Они несколько отличаются от расчетных, поскольку прямое падение напряжения на диодах в Electronics Workbench, как отмечалось, не равно нулю. Следует также отметить, что амперметр, включенный последовательно с диодом и переведенный в режим АС, измеряет среднеквадратичное напряжение всех гармонических составляющих (не включая постоянную составляющую) и для вычисления действующего значения необходимо взять корень квадратный из суммы квадратов показаний обоих амперметров, включенных последовательно с диодом (см. Приложение 1). Максимальное обратное напряжение на диоде можно измерить по осциллограмме, снятой с помощью источника ЭДС, управляемого напряжением (см. Приложение 1), включенного параллельно диоду. Максимум напряжения снимается как разница напряжений на

Electronics Workbench V 5.12

диоде в моменты времени, отмеченные курсорами. Первый курсор выставлен в момент времени, когда диод открыт, второй курсор установлен в момент, когда к диоду приложено максимальное отрицательное напряжение.

Задачи для самостоятельного исследования

В этом разделе приведены условия 6 задач из 40. Условия остальных задач приведены в файлах с9_207.с...с9_240.сс на прилагаемой к книге дискете. Для моделирования используйте файл с9_200.са4. Задача 1 (с9_200) Двухполупериодный выпрямитель нагружен на сопротивление R. Частота питающей сети 50 Гц. Проведены 3 опыта:

1. Нагрузка подключена непосредственно к выпрямителю. Среднее значение тока в диодах отличается от действующего значения тока на 0.2 А. 2. Нагрузка подключена к выпрямителю через индуктивный фильтр. Индуктивность фильтра 0.5 Гн, коэффициент сглаживания — 10. 3. Нагрузка подключена к выпрямителю через индуктивный фильтр. Индуктивность фильтра настолько велика, что пульсациями тока нагрузки можно пренебречь. Найти: Максимальное обратное напряжение на диодах, величину выделяемой в нагрузке активной мощности для 1-го и 3-го опытов.

Задача 2 (с9_201) Двухполупериодный выпрямитель нагружен на сопротивление R. Частота питающей сети 50 Гц. Максимальное обратное напряжение на диодах 50 В. Проведены 3 опыта: 1. Нагрузка подключена непосредственно к выпрямителю. Среднее значение тока в диодах отличается от действующего значения тока вторичных обмоток трансформатора на 0.2 А.

2. Нагрузка подключена к выпрямителю через индуктивный фильтр. Коэффициент сглаживания фильтра 10. 3. Нагрузка подключена к выпрямителю через индуктивный фильтр. Индуктивность фильтра настолько велика, что пульсациями тока нагрузки можно пренебречь. Найти: Индуктивность фильтра во 2-ом опыте, величину выделяемой в нагрузке активной мощности для 1-го и 3-го опытов.

Задача 3 (с9_202) Двухполупериодный выпрямитель нагружен на сопротивление R. Частота питающей сети 50 Гц. Проведены 3 опыта: 1. Нагрузка подключена непосредственно к выпрямителю. 2. Нагрузка подключена к выпрямителю через индуктивный фильтр. Индуктивность фильтра 0.4 Гн, коэффициент сглаживания 15. 3. Нагрузка подключена к выпрямителю через индуктивный фильтр. Индуктивность фильтра настолько велика, что пульсациями тока нагрузки можно пренебречь. В этом случае среднее значение тока в диодах отличается от действующего значения тока на 0.3 А. Найти: Максимальное обратное напряжение на диодах, величины выделяемой в нагрузке активной мощности и потребляемой из сети полной мощности для 1-го опыта.

Задача 4 (с9_203) Двухполу периодный выпрямитель нагружен на сопротивление R. Частота питающей сети 50 Гц. Максимальное обратное напряжение на диодах 50 В. Проведены 3 опыта: 1. Нагрузка подключена непосредственно к выпрямителю. 2. Нагрузка подключена к выпрямителю через индуктивный фильтр. Коэффициент сглаживания фильтра 15. 3. Нагрузка подключена к выпрямителю через индуктивный фильтр. Индуктивность фильтра настолько велика, что пульсациями тока нагрузки можно пренебречь. В этом случае среднее значение тока в диодах отличается от действующего значения тока во вторичных обмотках трансформатора на 0.4 А. Найти: Индуктивность фильтра во 2-м опыте, величину потребляемой из сети полной мощности в 1-м и 3-м опытах.

Задача 5 (с9_204) Двухполупериодный выпрямитель нагружен на сопротивление R. Частота питающей сети 50 Гц. Проведены 3 опыта: 1. Нагрузка подключена непосредственно к выпрямителю. 2. Нагрузка подключена к выпрямителю через индуктивный фильтр. Индуктивность фильтра 0.2 Гн, коэффициент сглаживания 10. 3. Нагрузка подключена к выпрямителю через индуктивный фильтр. Индуктивность фильтра настолько велика, что пульсациями тока нагрузки можно пренебречь. Известно, что величина действующего значения тока диодов в 1-м и 3-м опытах различается на 0.2 А. Найти: Максимальное обратное напряжение на диодах, величину выделяемой в нагрузке активной мощности для 1-го и 3-го опытов.

Задача 6 (с9_205) Двухполупериодный выпрямитель нагружен на сопротивление R. Частота питающей сети 50 Гц. Максимальное обратное напряжение на диодах 60 В. Проведены 3 опыта: 1. Нагрузка подключена непосредственно к выпрямителю. 2. Нагрузка подключена к выпрямителя через индуктивный фильтр. Коэффициент сглаживания фильтра 12. 3. Нагрузка подключена к выпрямителя через индуктивный фильтр. Индуктивность фильтра настолько велика, что пульсациями тока нагрузки можно пренебречь. Известно, что величина действующего тока вторичных обмоток трансформатора в 1-м и 3-м опытах различается на 0.3 А. Найти: Индуктивность фильтра во 2-м опыте, величину выделяемой в нагрузке активной мощности для 1-го и 3-го опытов.

Задача 7(с9_206) Двухполупериодный выпрямитель нагружен на сопротивление R. Частота питающей сети 50 Гц. Проведены 3 опыта: 1. Нагрузка подключена непосредственно к выпрямителю. 2. Нагрузка подключена к выпрямителю через L-фильтр. Индуктивность фильтра составляет 0.3 Гн. Коэффициент пульсации тока нагрузки равен 0.07. 3. Нагрузка подключена к выпрямителю через L-фильтр. Индуктивность фильтра настолько велика, что пульсациями тока нагрузки можно пренебречь. Известно, что величина потребляемой из сети полной мощности в 1-м и 3-м опытах различается на 10 ВА. Найти: Максимальное обратное напряжение на диодах, величину выделяемой в нагрузке активной мощности в 1-м и 3-м опытах.

Задача 8(с9_207) Двухполупериодный выпрямитель нагружен на сопротивление R. Частота питающей сети 50 Гц. Максимальное обратное напряжение на диодах 80 В. Проведены 3 опыта: 1. Нагрузка подключена непосредственно к выпрямителю. 2, Нагрузка подключена к выпрямителю через L-фильтр. Коэффициент пульсации тока нагрузки равен 0.13. 3. Нагрузка подключена к выпрямителю через L-фильтр. Индуктивность фильтра настолько велика, что пульсациями тока нагрузки можно пренебречь. Известно, что величина потребляемой из сети полной мощности в 1-м и 3-м опытах различается на 5 ВА. Найти: Индуктивность фильтра во 2-м опыте, величину выделяемой в нагрузке активной мощности для 1-го и 3-го опытов.

Задача 9(с9_208) Двухполупериодный выпрямитель нагружен на сопротивление R. Частота питающей сети 50 Гц. Проведены 3 опыта: 1. Нагрузка подключена непосредственно к выпрямителю. 2. Нагрузка подключена к выпрямителю через L-фильтр. Индуктивность фильтра составляет 0,4 Гн. Коэффициент пульсации напряжения нагрузки равен 0.13. 3. Нагрузка подключена к выпрямителю через L-фильтр. Индуктивность фильтра настолько велика, что пульсациями тока нагрузки можно пренебречь. Известно, что величина выделяемой в нагрузке активной мощности в 1-м и 3-м опытах различается на 2 Вт. Найти: Максимальное обратное напряжение на диодах, величину потребляемой из сети полной мощности для 1-го и 3-го опытов.

к оглавлению


Знаете ли Вы, что cогласно релятивистской мифологии "гравитационное линзирование - это физическое явление, связанное с отклонением лучей света в поле тяжести. Гравитационные линзы обясняют образование кратных изображений одного и того же астрономического объекта (квазаров, галактик), когда на луч зрения от источника к наблюдателю попадает другая галактика или скопление галактик (собственно линза). В некоторых изображениях происходит усиление яркости оригинального источника." (Релятивисты приводят примеры искажения изображений галактик в качестве подтверждения ОТО - воздействия гравитации на свет)
При этом они забывают, что поле действия эффекта ОТО - это малые углы вблизи поверхности звезд, где на самом деле этот эффект не наблюдается (затменные двойные). Разница в шкалах явлений реального искажения изображений галактик и мифического отклонения вблизи звезд - 1011 раз. Приведу аналогию. Можно говорить о воздействии поверхностного натяжения на форму капель, но нельзя серьезно говорить о силе поверхностного натяжения, как о причине океанских приливов.
Эфирная физика находит ответ на наблюдаемое явление искажения изображений галактик. Это результат нагрева эфира вблизи галактик, изменения его плотности и, следовательно, изменения скорости света на галактических расстояниях вследствие преломления света в эфире различной плотности. Подтверждением термической природы искажения изображений галактик является прямая связь этого искажения с радиоизлучением пространства, то есть эфира в этом месте, смещение спектра CMB (космическое микроволновое излучение) в данном направлении в высокочастотную область. Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
Bourabai Research - Технологии XXI века Bourabai Research Institution