к библиотеке   к ТПОИ   к экономической информатике   к дискретной математике

Системы поддержки принятия решений

  1. Классификации СППР
  2. Архитектура СППР
  3. Структура СППР
  4. Динамическое моделирование
  5. Решаемые вопросы
  6. Экспертные системы
  7. Обзор СППР
  8. Литература
Система поддержки принятия решений, СППР, Decision Support System, DSS - компьютерная автоматизированная система, целью которой является помощь людям, принимающим решение в сложных условиях для полного и объективного анализа предметной деятельности.

СППР возникли в результате слияния управленческих информационных систем и систем управления базами данных.

Система поддержки принятия решений предназначена для поддержки многокритериальных решений в сложной информационной среде. При этом под многокритериальностью понимается тот факт, что результаты принимаемых решений оцениваются не по одному, а по совокупности многих показателей (критериев) рассматриваемых одновременно. Информационная сложность определяется необходимостью учета большого объема данных, обработка которых без помощи современной вычислительной техники практически невыполнима. В этих условиях число возможных решений, как правило, весьма велико, и выбор наилучшего из них "на глаз", без всестороннего анализа может приводить к грубым ошибкам.

Система поддержки решений СППР решает две основные задачи:

В обеих задачах первым и наиболее принципиальным моментом является выбор совокупности критериев, на основе которых в дальнейшем будут оцениваться и сопоставляться возможные решения (будем называть их также альтернативами). Система СППР помогает пользователю сделать такой выбор.

Для анализа и выработок предложений в СППР используются разные методы. Это могут быть: - информационный поиск,

Некоторые из этих методов были разработаны в рамках искусственного интеллекта. Если в основе работы СППР лежат методы искусственного интеллекта, то говорят об интеллектуальной СППР или ИСППР.

Близкие к СППР классы систем — это экспертные системы и автоматизированные системы управления.

Система позволяет решать задачи оперативного и стратегического управления на основе учетных данных о деятельности компании.

Система поддержки принятия решений представляет собой комплекс программных инструментальных средств для анализа данных, моделирования, прогнозирования и принятия управленческих решений, состоящий из собственных разработок корпорации и приобретаемых программных продуктов (Oracle, IBM, Cognos).

Теоретические исследования в области разработки первых систем поддержки принятия решений проводились в технологическом институте Карнеги в конце 50-х начале 60-х годов XX века. Объединить теорию с практикой удалось специалистам из Массачусетского технологического института в 60-х годах. В середине и конце 80-х годов XX столетия стали появляться такие системы, как EIS, GDSS, ODSS. В 1987 году компания Texas Instruments разработала для United Airlines Gate Assignment Display System. Это позволило значительно снизить убытки от полетов и отрегулировать управление различными аэропортами, начиная от Международного аэропорта O’Hare в Чикаго и заканчивая Stapleton в Денвере, штат Колорадо. В 90-х годах сфера возможностей СППР расширялась благодаря внедрению хранилищ данных и инструментов OLAP. Появление новых технологий отчетности сделало СППР незаменимой в менеджменте.

Классификации СППР

По взаимодействию с пользователем выделяют три вида СППР:

По способу поддержки различают:

По сфере использования выделяют:

Общесистемные работают с большими СХД и применяются многими пользователями. Настольные являются небольшими системами и подходят для управления с персонального компьютера одного пользователя.

Архитектура СППР

Функциональные СППР

Являются наиболее простыми с точки зрения архитектуры. Они распространены в организациях, не ставящих перед собой глобальных задач и имеющих невысокий уровень развития информационных технологий. Отличительной особенностью функциональных СППР является то, что анализу подвергаются данные, содержащиеся в файлах операционных систем. Преимуществами подобных СППР являются компактность из-за использования одной платформы и оперативность в связи с отсутствием необходимости перегружать данные в специализированную систему. Из недостатков можно отметить следующие: сужение круга вопросов, решаемых с помощью системы, снижение качества данных из-за отсутствия этапа их очистки, увеличение нагрузки на операционную систему с потенциальной возможностью прекращения ее работы.

СППР, использующие независимые витрины данных

Применяются в крупных организациях, имеющих несколько подразделений, в том числе отделы информационных технологий. Каждая конкретная витрина данных создается для решения определенных задач и ориентирована на отдельный круг пользователей. Это значительно повышает производительность системы. Внедрение подобных структур достаточно просто. Из отрицательных моментов можно отметить то, что данные многократно вводятся в различные витрины, поэтому могут дублироваться. Это повышает затраты на хранение информации и усложняет процедуру унификации. Наполнение витрин данных достаточно сложно в связи с тем, что приходится использовать многочисленные источники. Отсутствует единая картина бизнеса организации, вследствие того что нет окончательной консолидации данных.

СППР на основе двухуровневого хранилища данных

Используется в крупных компаниях, данные которых консолидированы в единую систему. Определения и способы обработки информации в данном случае унифицированы. На обеспечение нормальной работы подобной СППР требуется выделить специализированную команду, которая будет ее обслуживать. Такая архитектура СППР лишена недостатков предыдущей, но в ней нет возможности структурировать данные для отдельных групп пользователей, а также ограничивать доступ к информации. Могут возникнуть трудности с производительностью системы.

СППР на основе трехуровневого хранилища данных

Такие СППР применяют хранилище данных, из которого формируются витрины данных, используемые группами пользователей, решающих сходные задачи. Таким образом, обеспечивается доступ, как к конкретным структурированным данным, так и к единой консолидированной информации. Наполнение витрин данных упрощается ввиду использования проверенных и очищенных данных, находящихся в едином источнике. Имеется корпоративная модель данных. Такие СППР отличает гарантированная производительность. Но существует избыточность данных, которая ведет к росту требований на их хранение. Кроме того, необходимо согласовать подобную архитектуру с множеством областей, имеющих потенциально различные запросы.

Структура СППР

Выделяют четыре основных компонента:

Динамическое моделирование

Особый класс систем стратегического управления и поддержки принятия решений представляют собой системы, позволяющие осуществлять динамическое моделирование процессов. При использовании методов динамического моделирования деятельность компании описывается в виде математической модели, в которой все бизнес-задачи и процессы представляются как система взаимосвязанных вычисляемых показателей.

Решаемые вопросы

СППР позволяет облегчить работу руководителям предприятий и повысить ее эффективность. Они значительно ускоряют решение проблем в бизнесе. СППР способствуют налаживанию межличностного контакта. На их основе можно проводить обучение и подготовку кадров. Данные информационные системы позволяют повысить контроль над деятельностью организации. Наличие четко функционирующей СППР дает большие преимущества по сравнению с конкурирующими структурами. Благодаря предложениям, выдвигаемым СППР, открываются новые подходы к решению повседневных и нестандартных задач.

Использование системы позволяет найти ответы на множество вопросов, возникающих у руководителей компании, например:

У генерального директора:

У руководителя отдела по работе с партнерами:

У руководителя финансового департамента:

У руководителя департамента бюджетного планирования и контроля:

У руководителя департамента закупок:

У руководителя планового отдела (отдела стратегического планирования):

У руководителя отдела сервисного обслуживания:

У руководителя отдела кадров:

У руководителя отдела анализа качества:

Процесс создания системы управленческой отчетности, анализа данных и поддержки принятия решений состоит из следующих этапов:

Итог – продуманные решения опирающиеся на информационный фундамент, адекватные действия, квалифицированное исполнение и как результат успех всего предприятия.

Литература

  1. Ларичев О. И., Петровский А. В. Системы поддержки принятия решений. Современное состояние и перспективы их развития. // Итоги науки и техники. Сер. Техническая кибернетика. — Т.21. М.: ВИНИТИ, 1987, с. 131—164, http://www.raai.org/library/papers/Larichev/Larichev_Petrovsky_1987.pdf
  2. Сараев А. Д., Щербина О. А. Системный анализ и современные информационные технологии //Труды Крымской Академии наук. — Симферополь: СОНАТ, 2006. — С. 47-59, http://matmodelling.pbnet.ru/Statya_Saraev_Shcherbina.pdf
  3. Терелянский, П. В. Системы поддержки принятия решений. Опыт проектирования : монография / П. В. Терелянский ; ВолгГТУ. — Волгоград, 2009. — 127 с.
  4. Alter S. L. Decision support systems : current practice and continuing challenges. Reading, Mass.: Addison-Wesley Pub., 1980.
  5. Bonczek R.H., Holsapple C., Whinston A.B. Foundations of Decision Support Systems.- New York: Academic Press, , 1981.
  6. Davis G. Management Information Systems: Conceptual Foundations, Structure, and Development. — New York: McGraw-Hill, 1974.
  7. Druzdzel M. J., Flynn R. R. Decision Support Systems. Encyclopedia of Library and Information Science. — A. Kent, Marcel Dekker, Inc., 1999.
  8. Edwards J.S. Expert Systems in Management and Administration — Are they really different from Decision Support Systems? // European Journal of Operational Research, 1992. — Vol. 61. — pp. 114—121.
  9. Eom H., Lee S. Decision Support Systems Applications Research: A Bibliography (1971—1988) // European Journal of Operational Research, 1990. — N 46. — pp. 333—342.
  10. Finlay P. N. Introducing decision support systems. — Oxford, UK Cambridge, Mass., NCC Blackwell: Blackwell Publishers, 1994.
  11. Ginzberg M.I., Stohr E.A. Decision Support Systems: Issues and Perspectives // Processes and Tools for Decision Support / ed. by H.G. Sol.. — Amsterdam: North-Holland Pub.Co, 1983.
  12. Golden B., Hevner A., Power D.J. Decision Insight Systems: A Critical Evaluation // Computers and Operations Research, 1986. — v. 13. — N2/3. — p. 287—300.
  13. Haettenschwiler P. Neues anwenderfreundliches Konzept der Entscheidungs-unterstutzung. Gutes Entscheiden in Wirtschaft, Politik und Gesellschaft. Zurich: Hochschulverlag AG, 1999. — S. 189—208.
  14. Holsapple C.W., Whinston A.B. Decision Support Systems: A Knowledge-based Approach. — Minneapolis: West Publishing Co., 1996.
  15. Keen P.G.W. Decision support systems: a research perspective. Decision support systems : issues and challenges. G. Fick and R. H. Sprague. Oxford ; New York: Pergamon Press, 1980.
  16. Keen P.G.W. Decision Support Systems: The next decades // Decision Support Systems, 1987. — v. 3. — pp. 253—265.
  17. Keen P.G.W., Scott Morton M. S. Decision support systems : an organizational perspective. Reading, Mass.: Addison-Wesley Pub. Co., 1978.
  18. Little J.D.C. Models and Managers: The Concept of a Decision Calculus // Management Science, 1970. — v. 16. — N 8.
  19. Marakas G. M. Decision support systems in the twenty-first century. Upper Saddle River, N.J.: Prentice Hall, 1999.
  20. Power D. J. “What is a DSS?” // The On-Line Executive Journal for Data-Intensive Decision Support, 1997. — v. 1. — N3.
  21. Power D. J. Web-based and model-driven decision support systems: concepts and issues. Americas Conference on Information Systems, Long Beach, California, 2000.
  22. Power D.J. A Brief History of Decision Support Systems. DSSResources.COM, World Wide Web, http://DSSResources.COM/history/dsshistory.html, version 2.8, May 31, 2003.
  23. Scott Morton M. S. Management Decision Systems: Computer-based Support for Decision Making. — Boston: Harvard University, 1971.
  24. Sprague R. H., Carlson E. D. Building Effective Decision Support Systems. — Englewood Cliffs, NJ: Prentice-Hall, 1982.
  25. Sprague R.H. A Framework for the Development of Decision Support Systems // MIS Quarterly, 1980. — v. 4. — pp. 1-26.
  26. Thierauf R.J. Decision Support Systems for Effective Planing and Control. -Englewood Cliffs, N.J: Prentice Hall, Inc, 1982. — 536 p.
к библиотеке   к оглавлению   к дискретной математике   технологии программирования

Знаете ли Вы, почему "черные дыры" - фикция?
Согласно релятивистской мифологии, "чёрная дыра - это область в пространстве-времени, гравитационное притяжение которой настолько велико, что покинуть её не могут даже объекты, движущиеся со скоростью света (в том числе и кванты самого света). Граница этой области называется горизонтом событий, а её характерный размер - гравитационным радиусом. В простейшем случае сферически симметричной чёрной дыры он равен радиусу Шварцшильда".
На самом деле миф о черных дырах есть порождение мифа о фотоне - пушечном ядре. Этот миф родился еще в античные времена. Математическое развитие он получил в трудах Исаака Ньютона в виде корпускулярной теории света. Корпускуле света приписывалась масса. Из этого следовало, что при высоких ускорениях свободного падения возможен поворот траектории луча света вспять, по параболе, как это происходит с пушечным ядром в гравитационном поле Земли.
Отсюда родились сказки о "радиусе Шварцшильда", "черных дырах Хокинга" и прочих безудержных фантазиях пропагандистов релятивизма.
Впрочем, эти сказки несколько древнее. В 1795 году математик Пьер Симон Лаплас писал:
"Если бы диаметр светящейся звезды с той же плотностью, что и Земля, в 250 раз превосходил бы диаметр Солнца, то вследствие притяжения звезды ни один из испущенных ею лучей не смог бы дойти до нас; следовательно, не исключено, что самые большие из светящихся тел по этой причине являются невидимыми." [цитата по Брагинский В.Б., Полнарёв А. Г. Удивительная гравитация. - М., Наука, 1985]
Однако, как выяснилось в 20-м веке, фотон не обладает массой и не может взаимодействовать с гравитационным полем как весомое вещество. Фотон - это квантованная электромагнитная волна, то есть даже не объект, а процесс. А процессы не могут иметь веса, так как они не являются вещественными объектами. Это всего-лишь движение некоторой среды. (сравните с аналогами: движение воды, движение воздуха, колебания почвы). Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
Bourabai Research - Технологии XXI века Bourabai Research Institution