Обобщением нескольких из перечисленных выше средних является
среднее по Колмогорову
-
для чисел среднее по Колмогорову вычисляется по формуле
где - строго монотонная функция (т.е. строго возрастающая или строго убывающая), - функция, обратная к .
Среди средних по Колмогорову - много хорошо известных персонажей. Так, если , то среднее по Колмогорову - это среднее арифметическое, если , то среднее геометрическое, если , то среднее гармоническое, если , то среднее квадратическое, и т.д. Среднее по Колмогорову - частный случай среднего по Коши. С другой стороны, такие популярные средние, как медиана и мода, нельзя представить в виде средних по Колмогорову. В монографии [2] доказаны следующие утверждения.
Теорема 3. При справедливости некоторых внутриматематических условий регулярности в шкале интервалов из всех средних по Колмогорову допустимым является только среднее арифметическое.
Таким образом, среднее геометрическое или среднее квадратическое температур (в шкале Цельсия) или расстояний не имеют смысла. В качестве среднего надо применять среднее арифметическое. А также можно использовать медиану или моду.
Теорема 4. При справедливости некоторых внутриматематических условий регулярности в шкале отношений из всех средних по Колмогорову допустимыми являются только степенные средние с и среднее геометрическое.
Замечание. Среднее геометрическое является пределом степенных средних при
Есть ли средние по Колмогорову, которыми нельзя пользоваться в шкале отношений? Конечно, есть. Например, с
Аналогично средним величинам могут быть изучены и другие статистические характеристики - показатели разброса, связи, расстояния и др. (см., например, [2]). Нетрудно показать, например, что коэффициент корреляции не меняется при любом допустимом преобразовании в шкале интервалов, как и отношение дисперсий, дисперсия не меняется в шкале разностей, коэффициент вариации - в шкале отношений, и т.д.
Приведенные выше результаты о средних величинах широко применяются, причем не только в экономике, менеджменте, теории экспертных оценок или социологии, но и в инженерном деле, например, для анализа методов агрегирования датчиков в АСУ ТП доменных печей. Велико прикладное значение ТИ в задачах стандартизации и управления качеством, в частности, в квалиметрии. Здесь есть и интересные теоретические результаты. Так, например, любое изменение коэффициентов весомости единичных показателей качества продукции приводит к изменению упорядочения изделий по средневзвешенному показателю (эта теорема доказана проф. В.В. Подиновским).
Знаете ли Вы, как разрешается парадокс Ольберса? (Фотометрический парадокс, парадокс Ольберса - это один из парадоксов космологии, заключающийся в том, что во Вселенной, равномерно заполненной звёздами, яркость неба (в том числе ночного) должна быть примерно равна яркости солнечного диска. Это должно иметь место потому, что по любому направлению неба луч зрения рано или поздно упрется в поверхность звезды. Иными словами парадос Ольберса заключается в том, что если Вселенная бесконечна, то черного неба мы не увидим, так как излучение дальних звезд будет суммироваться с излучением ближних, и небо должно иметь среднюю температуру фотосфер звезд. При поглощении света межзвездным веществом, оно будет разогреваться до температуры звездных фотосфер и излучать также ярко, как звезды. Однако в дело вступает явление "усталости света", открытое Эдвином Хабблом, который показал, что чем дальше от нас расположена галактика, тем больше становится красным свет ее излучения, то есть фотоны как бы "устают", отдают свою энергию межзвездной среде. На очень больших расстояниях галактики видны только в радиодиапазоне, так как их свет вовсе потерял энергию идя через бескрайние просторы Вселенной. Подробнее читайте в FAQ по эфирной физике.