Ценность и достоверность знаний, полученных в результате интеллектуального анализа бизнес-данных, зависит не только от эффективности используемых аналитических методов и алгоритмов, но и от того, насколько правильно подобраны и подготовлены исходные данные для анализа.
Обычно руководителям проектов по бизнес-аналитике с нуля приходится сталкиваться со следующей ситуацией. Во-первых, данные на предприятии расположены в различных источниках самых разнообразных форматов и типов — в отдельных файлах офисных документов (Excel, Word, обычных текстовых файлах), в учетных системах (<1С:Предприятие>, <Парус> и др.), в базах данных (Oracle, Access, dBase и др.). Во-вторых, данные могут быть избыточными или, наоборот, недостаточными. А в-третьих, данные являются <грязными>, то есть содержат факторы, мешающие их правильной обработке и анализу (пропуски, аномальные значения, дубликаты и противоречия).
Поэтому, прежде чем приступать к анализу данных, необходимо выполнить ряд процедур, цель которых — доведение данных до приемлемого уровня качества и информативности, а также организовать их интегрированное хранение в структурах, обеспечивающих их целостность, непротиворечивость, высокую скорость и гибкость выполнения аналитических запросов.
Определение
Консолидация - комплекс методов и процедур, направленных на извлечение данных из различных источников, обеспечение необходимого уровня их информативности и качества, преобразование в единый формат, в котором они могут быть загружены в хранилище данных или аналитическую систему.
Консолидация данных является начальным этапом реализации любой аналитической задачи или проекта. В основе консолидации лежит процесс сбора и организации хранения данных в виде, оптимальном с точки зрения их обработки на конкретной аналитической платформе или решения конкретной аналитической задачи. Сопутствующими задачами консолидации являются оценка качества данных и их обогащение.
Основные критерии оптимальности с точки зрения консолидации данных:
Ключевым понятием консолидации является источник данных — объект, содержащий структурированные данные, которые могут оказаться полезными для решения аналитической задачи. Необходимо, чтобы используемая аналитическая платформа могла осуществлять доступ к данным из этого объекта непосредственно либо после их преобразования в другой формат. В противном случае очевидно, что объект не может считаться источником данных.
Аналитические приложения, как правило, не содержат развитых средств ввода и редактирования данных, а работают с уже сформированными выборками. Таким образом, формирование массивов данных для анализа в большинстве случаев ложится на плечи заказчиков аналитических решений.
В процессе консолидации данных решаются следующие задачи:
Сначала осуществляется выбор источников, содержащих данные, которые могут иметь отношение к решаемой задаче, затем определяются тип источников и методика организации доступа к ним. В связи с этим можно выделить три основных подхода к организации хранения данных.
Данные, хранящиеся в отдельных (локальных) файлах, например в текстовых файлах с разделителями, документах Word, Excel и т.д. Такого рода источником может быть любой файл, данные в котором организованы в виде столбцов и записей. Столбцы должны быть типизированы, то есть содержать данные одного типа, например только текстовые или только числовые. Преимущество таких источников в том, что они могут создаваться и редактироваться с помощью простых и популярных офисных приложений, работа с которыми не требует от персонала специальной подготовки. К недостаткам следует отнести то, что они далеко не всегда оптимальны с точки зрения скорости доступа к ним, компактности представления данных и поддержки их структурной целостности. Например, ничто не мешает пользователю табличного процессора разместить в одном столбце данные различных типов (числовые и текстовые), что впоследствии обязательно приведет к проблемам при их обработке в аналитическом приложении.
Базы данных (БД) различных СУБД, таких как Oracle, SQL Server, Firebird, dBase, FoxPro, Access и т.д. Файлы БД лучше поддерживают целостность структуры данных, поскольку тип и свойства их полей жестко задаются при построении таблиц. Однако для создания и администрирования БД требуются специалисты с более высоким уровнем подготовки, чем для работы с популярными офисными приложениями.
Специализированные хранилища данных (ХД) являются наиболее предпочтительным решением, поскольку их структура и функционирование специально оптимизируются для работы с аналитической платформой. Большинство ХД обеспечивают высокую скорость обмена данными с аналитическими приложениями, автоматически поддерживают целостность и непротиворечивость данных. Главное преимущество ХД перед остальными типами источников данных — наличие семантического слоя, который дает пользователю возможность оперировать терминами предметной области для формирования аналитических запросов к хранилищу.
При разработке стратегии консолидации данных необходимо учитывать характер расположения источников данных — локальный, когда они размещены на том же ПК, что и аналитическое приложение, либо удаленный, если источники доступны только через локальную или Глобальную компьютерные сети. Характер расположения источников данных может существенно повлиять на качество собранных данных (потеря фрагментов, несогласованность во времени их обновления, противоречивость и т.д.).
Другой важной задачей, которую требуется решить в рамках консолидации, является оценка качества данных с точки зрения их пригодности для обработки с помощью различных аналитических алгоритмов и методов. В большинстве случаев исходные данные являются <грязными>, то есть содержат факторы, не позволяющие их корректно анализировать, обнаруживать скрытые структуры и закономерности, устанавливать связи между элементами данных и выполнять другие действия, которые могут потребоваться для получения аналитического решения. К таким факторам относятся ошибки ввода, пропуски, аномальные значения, шумы, противоречия и т.д. Поэтому перед тем, как приступить к анализу данных, необходимо оценить их качество и соответствие требованиям, предъявляемым аналитической платформой. Если в процессе оценки качества будут выявлены факторы, которые не позволяют корректно применить к данным те или иные аналитические методы, необходимо выполнить соответствующую очистку данных.
Определение
Очистка данных — комплекс методов и процедур, направленных на устранение причин, мешающих корректной обработке: аномалий, пропусков, дубликатов, противоречий, шумов и т.д.
Еще одной операцией, которая может понадобиться при консолидации данных, является их обогащение.
Определение
Обогащение — процесс дополнения данных некоторой информацией, позволяющей повысить эффективность решения аналитических задач.
Обогащение позволяет более эффективно использовать консолидированные данные. Его необходимо применять в тех случаях, когда данные содержат недостаточно информации для удовлетворительного решения определенной задачи анализа. Обогащение данных позволяет повысить их информационную насыщенность и, как следствие, значимость для решения аналитической задачи.
Место консолидации в общем процессе анализа данных может быть представлено в виде структурной схемы (рис. 1).
Рис. 1. Процесс консолидации данных
В основе процедуры консолидации лежит процесс ETL (extraction, transformation, loading). Процесс ETL решает задачи извлечения данных из разнотипных источников, их преобразования к виду, пригодному для хранения в определенной структуре, а также загрузки в соответствующую базу или хранилище данных. Если у аналитика возникают сомнения в качестве и информативности исходных данных, то при необходимости он может задействовать процедуры оценки их качества, очистки или обогащения, которые также являются составными частями процесса консолидации данных.
Пример
Процесс сбора, хранения и оперативной обработки данных на типичном предприятии обычно содержит несколько уровней. На верхнем уровне располагаются реляционные SQL-ориентированные СУБД типа SQL Server, Oracle и т.д. На втором — файловые серверы с некоторой системой оперативной обработки или сетевые версии персональных СУБД типа R-Base, FoxPro, Access и т.д. И наконец, на самом нижнем уровне расположены локальные ПК отдельных пользователей с персональными источниками данных. Чаще всего информация на них собирается в виде файлов офисных приложений — Word, Excel, текстовых файлов и т.д.
Из источников данных всех перечисленных уровней информация в соответствии с некоторым регламентом должна перемещаться в ХД. Для этого необходимо обеспечить выгрузку данных из источников, провести их преобразование к виду, соответствующему структуре ХД, а при необходимости выполнить их обогащение и очистку.
Таким образом, консолидация данных является сложной многоступенчатой процедурой и важнейшей составляющей аналитического процесса, обеспечивающей высокий уровень аналитических решений.
1. Электромагнитная волна (в религиозной терминологии релятивизма - "свет") имеет строго постоянную скорость 300 тыс.км/с, абсурдно не отсчитываемую ни от чего. Реально ЭМ-волны имеют разную скорость в веществе (например, ~200 тыс км/с в стекле и ~3 млн. км/с в поверхностных слоях металлов, разную скорость в эфире (см. статью "Температура эфира и красные смещения"), разную скорость для разных частот (см. статью "О скорости ЭМ-волн")
2. В релятивизме "свет" есть мифическое явление само по себе, а не физическая волна, являющаяся волнением определенной физической среды. Релятивистский "свет" - это волнение ничего в ничем. У него нет среды-носителя колебаний.
3. В релятивизме возможны манипуляции со временем (замедление), поэтому там нарушаются основополагающие для любой науки принцип причинности и принцип строгой логичности. В релятивизме при скорости света время останавливается (поэтому в нем абсурдно говорить о частоте фотона). В релятивизме возможны такие насилия над разумом, как утверждение о взаимном превышении возраста близнецов, движущихся с субсветовой скоростью, и прочие издевательства над логикой, присущие любой религии.
4. В гравитационном релятивизме (ОТО) вопреки наблюдаемым фактам утверждается об угловом отклонении ЭМ-волн в пустом пространстве под действием гравитации. Однако астрономам известно, что свет от затменных двойных звезд не подвержен такому отклонению, а те "подтверждающие теорию Эйнштейна факты", которые якобы наблюдались А. Эддингтоном в 1919 году в отношении Солнца, являются фальсификацией. Подробнее читайте в FAQ по эфирной физике.