к библиотеке   к оглавлению   FAQ по эфирной физике   электротехника и электроника   электрические цепи  

РЕАЛЬНАЯ ФИЗИКА

Закон Био–Савара. Теорема о циркуляции

Магнитное поле постоянных токов различной конфигурации изучалось экспериментально французскими учеными Ж. Био и Ф. Саваром (1820 г.). Они пришли к выводу, что индукция магнитного поля токов, текущих по проводнику, определяется совместным действием всех отдельных участков проводника. Магнитное поле подчиняется принципу суперпозиции: Если магнитное поле создается несколькими проводниками с током, то индукция результирующего поля есть векторная сумма индукций полей, создаваемых каждым проводником в отдельности. Индукцию  Закон Био–Савара. Теорема о циркуляции проводника с током можно представить как векторную сумму элементарных индукций  Закон Био–Савара. Теорема о циркуляции создаваемых отдельными участками проводника. На опыте невозможно осуществить отдельный участок проводника с током, так как постоянные токи всегда замкнуты. Можно измерить только суммарную индукцию магнитного поля, создаваемого всеми элементами тока. Закон Био–Савара определяет вклад  Закон Био–Савара. Теорема о циркуляции в магнитную индукцию  Закон Био–Савара. Теорема о циркуляции результирующего магнитного поля, создаваемый малым участком Δl проводника с током I.

 Закон Био–Савара. Теорема о циркуляции

Здесь r – расстояние от данного участка Δl до точки наблюдения, α – угол между направлением на точку наблюдения и направлением тока на данном участке, μ0 – магнитная постоянная. Направление вектора  Закон Био–Савара. Теорема о циркуляции определяется правилом буравчика: оно совпадает с направлением вращения рукоятки буравчика при его поступательном перемещении вдоль тока. Рис. 1 иллюстрирует закон Био–Савара на примере магнитного поля прямолинейного проводника с током. Если просуммировать (проинтегрировать) вклады в магнитное поле всех отдельных участков прямолинейного проводника с током, то получится формула для магнитной индукции поля прямого тока:

 Закон Био–Савара. Теорема о циркуляции

которая уже приводилась ранее

Иллюстрация закона Био–Савара.
Рисунок 1. Иллюстрация закона Био–Савара.

Закон Био–Савара позволяет рассчитывать магнитные поля токов различных конфигураций. Нетрудно, например, выполнить расчет магнитного поля в центре кругового витка с током. Этот расчет приводит к формуле

 Закон Био–Савара. Теорема о циркуляции

где R – радиус кругового проводника. Для определения направления вектора  Закон Био–Савара. Теорема о циркуляции также можно использовать правило буравчика, только теперь его рукоятку нужно вращать в направлении кругового тока, а поступательное перемещение буравчика укажет направление вектора магнитной индукции.  Расчеты магнитного поля токов часто упрощаются при учете симметрии в конфигурации токов, создающих поле. В этом случае расчеты можно выполнять с помощью теоремы о циркуляции вектора магнитной индукции, которая в теории магнитного поля токов играет ту же роль, что и теорема Гаусса в электростатике. Поясним понятие циркуляции вектора  Закон Био–Савара. Теорема о циркуляции Пусть в пространстве, где создано магнитное поле, выбран некоторый условный замкнутый контур (не обязательно плоский) и указано положительное направление обхода контура. На каждом отдельном малом участке Δl этого контура можно определить касательную составляющую  Закон Био–Савара. Теорема о циркуляции вектора  Закон Био–Савара. Теорема о циркуляции в данном месте, то есть определить проекцию вектора  Закон Био–Савара. Теорема о циркуляции на направление касательной к данному участку контура (рис. 2).

Замкнутый контур
Рисунок 2. Замкнутый контур (L) с заданным направлением обхода. Изображены токи I1, I2 и I3, создающие магнитное поле.

Циркуляцией вектора  Закон Био–Савара. Теорема о циркуляции называют сумму произведений  Закон Био–Савара. Теорема о циркуляцииΔl, взятую по всему контуру L:

 Закон Био–Савара. Теорема о циркуляции

Некоторые токи, создающие магнитное поле, могут пронизывать выбранный контур L в то время, как другие токи могут находиться в стороне от контура. Теорема о циркуляции утверждает, что циркуляция вектора  Закон Био–Савара. Теорема о циркуляции магнитного поля постоянных токов по любому контуру L всегда равна произведению магнитной постоянной μ0 на сумму всех токов, пронизывающих контур:

 Закон Био–Савара. Теорема о циркуляции

В качестве примера на рис. 2 изображены несколько проводников с токами, создающими магнитное поле. Токи I2 и I3 пронизывают контур L в противоположных направлениях, им должны быть приписаны разные знаки – положительными считаются токи, которые связаны с выбранным направлением обхода контура правилом правого винта (буравчика). Следовательно, I3 > 0, а I2 < 0. Ток I1 не пронизывает контур L. Теорема о циркуляции в данном примере выражается соотношением:

 Закон Био–Савара. Теорема о циркуляции

Теорема о циркуляции в общем виде следует из закона Био–Савара и принципа суперпозиции. Простейшим примером применения теоремы о циркуляции является определение магнитной индукции поля прямолинейного проводника с током. Учитывая симметрию в данной задаче, контур L целесообразно выбрать в виде окружности некоторого радиуса R, лежащей в перпендикулярной проводнику плоскости. Центр окружности находится в некоторой точке проводника. В силу симметрии вектор  Закон Био–Савара. Теорема о циркуляции направлен по касательной ( Закон Био–Савара. Теорема о циркуляции ), а его модуль одинаков во всех точках окружности. Применение теоремы о циркуляции приводит к соотношению:

 Закон Био–Савара. Теорема о циркуляции

откуда следует формула для модуля магнитной индукции поля прямолинейного проводника с током, приведенная ранее.  Этот пример показывает, что теорема о циркуляции вектора магнитной индукции  Закон Био–Савара. Теорема о циркуляции может быть использована для расчета магнитных полей, создаваемых симметричным распределением токов, когда из соображений симметрии можно «угадать» общую структуру поля. Имеется немало практически важных примеров расчета магнитных полей с помощью теоремы о циркуляции. Одним из таких примеров является задача вычисления поля тороидальной катушки (рис. 3).

Применение теоремы о циркуляции
Рисунок 3. Применение теоремы о циркуляции к тороидальной катушке.

Предполагается, что катушка плотно, то есть виток к витку, намотана на немагнитный тороидальный сердечник. В такой катушке линии магнитной индукции замыкаются внутри катушки и представляют собой концентрические окружности. Они направлены так, что глядя вдоль них, мы увидели бы ток в витках, циркулирующим по часовой стрелке. Одна из линий индукции некоторого радиуса r1 ≤ r < r2 изображена на рис. 3. Применим теорему о циркуляции к контуру L в виде окружности, совпадающей с изображенной на рис. 3 линией индукции магнитного поля. Из соображений симметрии ясно, что модуль вектора  Закон Био–Савара. Теорема о циркуляции одинаков вдоль всей этой линии. По теореме о циркуляции можно записать:

B ∙ 2πr = μ0IN,

где N – полное число витков, а I – ток, текущий по виткам катушки. Следовательно,

 Закон Био–Савара. Теорема о циркуляции

Таким образом, модуль вектора магнитной индукции в тороидальной катушке зависит от радиуса r. Если сердечник катушки тонкий, то есть r2 – r1 << r, то магнитное поле внутри катушки практически однородно. Величина n = N / 2πr представляет собой число витков на единицу длины катушки. В этом случае

B = μ0In.

В это выражение не входит радиус тора, поэтому оно справедливо и в предельном случае r → ∞. Но в пределе каждую часть тороидальной катушки можно рассматривать как длинную прямолинейную катушку. Такие катушки называют соленоидами. Вдали от торцов соленоида модуль магнитной индукции выражается тем же соотношением, что и в случае тороидальной катушки. На рис. 4 изображено магнитное поле катушки конечной длины. Следует обратить внимание на то, что в центральной части катушки магнитное поле практически однородно и значительно сильнее, чем вне катушки. На это указывает густота линий магнитной индукции. В предельном случае бесконечно длинного соленоида однородное магнитное поле целиком сосредоточено внутри соленоида.

Магнитное поле катушки конечной длины.
Рисунок 4. Магнитное поле катушки конечной длины. В центре соленоида магнитное поле практически однородно и значительно превышает по модулю поле вне катушки.

В случае бесконечно длинного соленоида выражение для модуля магнитной индукции можно получить непосредственно с помощью теоремы о циркуляции, применив ее к прямоугольному контуру, показанному на рис. 5.

Применение теоремы о циркуляции
Рисунок 5. Применение теоремы о циркуляции к расчету магнитного поля бесконечно длинного соленоида.

Вектор магнитной индукции имеет отличную от нуля проекцию на направление обхода контура abcd только на стороне ab. Следовательно, циркуляция вектора  Закон Био–Савара. Теорема о циркуляции по контуру равна Bl, где l – длина стороны ab. Число витков соленоида, пронизывающих контур abcd, равно n · l, где n – число витков на единицу длины соленоида, а полный ток, пронизывающий контур, равен Inl. Согласно теореме о циркуляции,

Bl = μ0Inl,

откуда

B = μ0In.

Это выражение совпадает с полученной ранее формулой для магнитного поля тонкой тороидальной катушки

к библиотеке   к оглавлению   FAQ по эфирной физике   электротехника и электроника   электрические цепи  

Знаете ли Вы, что, когда некоторые исследователи, пытающиеся примирить релятивизм и эфирную физику, говорят, например, о том, что космос состоит на 70% из "физического вакуума", а на 30% - из вещества и поля, то они впадают в фундаментальное логическое противоречие. Это противоречие заключается в следующем.

Вещество и поле не есть что-то отдельное от эфира, также как и человеческое тело не есть что-то отдельное от атомов и молекул его составляющих. Оно и есть эти атомы и молекулы, собранные в определенном порядке. Также и вещество не есть что-то отдельное от элементарных частиц, а оно состоит из них как базовой материи. Также и элементарные частицы состоят из частиц эфира как базовой материи нижнего уровня. Таким образом, всё, что есть во вселенной - это есть эфир. Эфира 100%. Из него состоят элементарные частицы, а из них всё остальное. Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
Bourabai Research - Технологии XXI века Bourabai Research Institution