ВСТ   КС   РиЭКТ   ИСиТК   ОИС   ОСВМ   визуальные среды - 4GL   Web   технологии программирования

Три основных класса IP-адресов

Адрес состоит из двух логических частей - номера сети и номера узла в сети. Какая часть адреса относится к номеру сети, а какая к номеру узла, определяется значениями первых битов адреса:

Класс А
0 N сети N узла
Класс В
1 0 N сети N узла
Класс С
1 1 0 N сети N узла
Класс D
1 1 1 0 N сети N узла
Класс Е
1 1 1 1 0 N сети N узла
В таблице приведены диапазоны номеров сетей, соответствующих каждому классу сетей.
Класс Наименьший адрес Наибольший адрес
A 01.0.0.0 126.0.0.0
B 128.0.0.0 191.255.0.0
C 192.0.1.0 223.255.255.0
D 224.0.0.0 239.255.255.255
E 240.0.0.0 247.255.255.255

Соглашения о специальных адресах: broadcast, multicast, loopback

В протоколе IP существует несколько соглашений об особой интерпретации IP-адресов:

Уже упоминавшаяся форма группового IP-адреса - multicast - означает, что данный пакет должен быть доставлен сразу нескольким узлам, которые образуют группу с номером, указанным в поле адреса. Узлы сами идентифицируют себя, то есть определяют, к какой из групп они относятся. Один и тот же узел может входить в несколько групп. Такие сообщения в отличие от широковещательных называются мультивещательными. Групповой адрес не делится на поля номера сети и узла и обрабатывается маршрутизатором особым образом.
В протоколе IP нет понятия широковещательности в том смысле, в котором оно используется в протоколах канального уровня локальных сетей, когда данные должны быть доставлены абсолютно всем узлам. Как ограниченный широковещательный IP-адрес, так и широковещательный IP-адрес имеют пределы распространения в интерсети - они ограничены либо сетью, к которой принадлежит узел - источник пакета, либо сетью, номер которой указан в адресе назначения. Поэтому деление сети с помощью маршрутизаторов на части локализует широковещательный шторм пределами одной из составляющих общую сеть частей просто потому, что нет способа адресовать пакет одновременно всем узлам всех сетей составной сети.

Публичные и приватные IP адреса

Некоторые сети соединяются друг с другом через Интернет, в то время как другие являются приватными.

Публичные IP адреса

Интернет-стабильность зависит непосредственно от уникальности публично используемых сетевых адресов. Поэтому, необходим некоторый механизм, гарантирующий, что адреса уникальны. В Европе существует орган по надзору за присвоением адресов Интернета RIPE NCC - Европейский центр распределения адресного пространства. RIPE NCC управляет распределением адресов IP так, чтобы гарантировать, что дублирование публично используемых адресов не происходит. В других регионах существуют аналогичные организации:
APNIC - Азиатско-Тихоокеанский Центр сетевой информации;
ARIN - Американская Регистрация адресов Интернет.

С быстрым ростом Интернета, Публичные адреса IP начали заканчиваться.

Приватные адреса IP

В то время как интернет-хосты требуют глобально уникального IP адреса, хосты, которые не связаны с Интернетом, могут использовать любой правильный адрес уникальный в пределах частной сети. В 1994, IETF предложил использовать блок IP адресов мог для частных сетей. Приватные сети, которые нуждались в IP, не требуя обеспечения связи с Интернетом, могли просто использовать адреса из этого блока IP адресов для частного использования.
Три блока адресов IP (одна Сеть класса A, 16 сетей Класса В, и 256 сетей Класса С) определялись для частного, внутреннего использования. Адреса в этом диапазоне не сети Интернет. Интернет-маршрутизаторы сконфигурированы, чтобы отказаться от частных адресов. Когда сеть, используя Приватные адреса должна соединиться с Интернетом, необходимо перевести Приватные адреса в открытые адреса. Этот процесс называется трансляцией адресов.

Класс сети Диапазон приватных адресов
A 10.0.0.0 – 10.255.255.255
B 172.16.0.0 – 172.31.255.25
C 192.168.0.0. – 192.168.255.255

Распределение адресов IPv4

Двадцать лет назад, IPv4 предложил стратегию адресации, которая в конечном счете привела к неэффективному распределению адресов. Адреса классов A и В составляет 75 процентов адресного пространства IPv4, но относительная маленькая горстка организаций (меньше чем 17 000) может получить сети класса A или В. Адреса сети класса С являются намного более многочисленными чем адреса классов A и В, хотя они составляют только 12.5 процентов из возможных 4 миллиардов IP адресов. К сожалению, адреса Класса С ограничены 254 хостами.

Протокол IPv.6

Технология стека TCP/IP сложилась в основном в конце 1970-х годов и с тех пор основные принципы работы базовых протоколов, таких как IP, TCP, UDP и ICMP, практически не изменились. Однако, сам компьютерный мир за эти годы значительно изменился, поэтому долго назревавшие усовершенствования в технологии стека TCP/IP сейчас стали необходимостью.

Основными обстоятельствами, из-за которых требуется модификация базовых протоколов стека TCP/IP, являются следующие.

Сообщество Internet уже несколько лет работает над разработкой новой спецификации для базового протокола стека - протокола IP. Выработано уже достаточно много предложений, от простых, предусматривающих только расширения адресного пространства IP, до очень сложных, приводящих к существенному увеличению стоимости реализации IP в высокопроизводительных (и так недешевых) маршрутизаторах.
Основным предложением по модернизации протокола IP является предложение, разработанное группой IETF. Сейчас принято называть ее предложение версией 6 - IPv6.
В предложении IETF протокол IPv6 оставляет основные принципы IPv4 неизменными. К ним относятся дейтаграммный метод работы, фрагментация пакетов, разрешение отправителю задавать максимальное число хопов для своих пакетов. Однако, в деталях реализации протокола IPv6 имеются существенные отличия от IPv4. Эти отличия коротко можно описать следующим образом.

Адресация в IPv6

Адреса назначения и источника в IPv6 имеют длину 128 бит или 16 байт. Версия 6 обобщает специальные типы адресов версии 4 в следующих типах адресов:

Как и в версии IPv4, адреса в версии IPv6 делятся на классы, в зависимости от значения нескольких старших бит адреса.
Большая часть классов зарезервирована для будущего применения.
Для обеспечения совместимости со схемой адресации версии IPv4, в версии IPv6 имеется класс адресов, имеющих 0000 0000 в старших битах адреса. Младшие 4 байта адреса этого класса должны содержать адрес IPv4. Маршрутизаторы, поддерживающие обе версии адресов, должны обеспечивать трансляцию при передаче пакета из сети, поддерживающей адресацию IPv4, в сеть, поддерживающую адресацию IPv6, и наоборот.
На практике процесс конвертирования адреса из старой схемы в новую весьма прост. Так IРv4-адресу:192.168.33.54 соответствует IPv6-aдpec : :192.168.33.54
После завершения перехода на новую схему адресации, адреса в IPv6 будут записываться в шестнадцатеричной нотации. В ней существует 16 "цифр": 0, 1,2, 3, 4, 5, 6, 7, 8, 9, а, b, с, d, e, f. Типичный IPv6-адрес может выглядеть, например, так

3dfe:0b80:0al8:1def:0000:0000:0000:0287

В схеме IPv6 разрешается отбрасывать ведущие нули, поэтому приведенный выше адрес эквивалентен следующему

3dfе:b80:а!8:Idef:0:0 : 0 : 287

Чтобы записать приведенный выше IPv4-адрес 192.168.33.54 в новой нотации, переведем сначала его составляющие в двоичный код

11000000 10101000 00100001 00111000

После перевода в шестнадцатеричную форму он выглядит так
с0а8:2138 Полный IPv6-aдрec будет выглядеть так

0000:0000:0000:0000:0000:0000:с0а8:2136

или

0:0:0:0:0:0:с0а8:2136

или

::192.168.33.54

ВСТ   КС   РиЭКТ   ИСиТК   ОИС   ОСВМ   визуальные среды - 4GL   Web   технологии программирования

Знаете ли Вы, что электромагнитное и другие поля есть различные типы колебаний, деформаций и вариаций давления в эфире.

Понятие же "физического вакуума" в релятивистской квантовой теории поля подразумевает, что во-первых, он не имеет физической природы, в нем лишь виртуальные частицы у которых нет физической системы отсчета, это "фантомы", во-вторых, "физический вакуум" - это наинизшее состояние поля, "нуль-точка", что противоречит реальным фактам, так как, на самом деле, вся энергия материи содержится в эфире и нет иной энергии и иного носителя полей и вещества кроме самого эфира.

В отличие от лукавого понятия "физический вакуум", как бы совместимого с релятивизмом, понятие "эфир" подразумевает наличие базового уровня всей физической материи, имеющего как собственную систему отсчета (обнаруживаемую экспериментально, например, через фоновое космичекое излучение, - тепловое излучение самого эфира), так и являющимся носителем 100% энергии вселенной, а не "нуль-точкой" или "остаточными", "нулевыми колебаниями пространства". Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
Bourabai Research - Технологии XXI века Bourabai Research Institution