к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Изгибная деформация

Изгибная деформация - вид деформации, характеризующийся изменением кривизны оси (бруса, балки, стержня) или срединной поверхности (пластинки, оболочки)под действием внеш. сил или температуры. Применительно к прямому брусу различают плоский (прямой), косой, чистый, поперечный и продольный И. Плоский И. возникает, когда силы, изгибающие брус, совпадают с одной из его гл. плоскостей, т. е. плоскостей, проходящих через ось бруса и гл. оси инерции его поперечных сечений. Косой И. возникает, если силы, изгибающие брус, лежат в плоскости, проходящей через ось бруса, но не совпадающей ни с одной из его главных плоскостей. Чистый И. происходит под действием только пар сил (изгибающих моментов),
3-39.jpg
Рис. 1. Изгиб бруса: a - чистый; б - поперечный; в - продольный.

напр. в случае приложения к концам бруса двух равных по величине и противоположных по направлению моментов М (рис. 1, а). Поперечный И. происходит как под действием изгибающих моментов, так и поперечных сил, напр., в случае действия на брус сосредоточенных сил (рис. 1, б). Продольный И. возникает под действием на стержень продольных сжимающих сил F (рис. 1, в), при достижении к-рыми нек-рых величин (критических сил)может произойти потеря устойчивости равновесия (см. Продольный изгиб, Устойчивость упругих систем). Изучение И. производится в предположении, что поперечные сечения бруса, плоские до И., остаются плоскими и после него (гипотеза плоских сечений), что продольные волокна бруса при И. не сжимают друг друга и не стремятся оторваться одно от другого. Получаемые при этом расчётные ф-лы применимы, если поперечные размеры бруса малы по сравнению с его длиной и отсутствуют резкие изменения поперечных сечений бруса. При чистом И. в сечениях бруса действуют только изгибающие моменты и притом постоянной величины, поэтому, если из прямого бруса, работающего в упругой области (рис. 2, а), выделить двумя поперечными сечениями элемент длиной ds, то действие отброшенных частей бруса на элемент ds можно заменить равными моментами М.
3-40.jpg
Рис. 2.а- брус, работающий в условиях чистого изгиба; б - элемент бруса ds после деформации; в - сечение бруса; г - эпюра .

При И. поперечные сечения, расположенные по концам элемента ds, наклоняются одно к другому, оставаясь плоскими (рис. 2, б), а продольные волокна, расположенные на выпуклой стороне элемента, удлиняются, на вогнутой - укорачиваются; промежуточный слой, волокна к-рого не изменяют своей длины, наз. нейтральным слоем. Линия пересечения нейтрального слоя с плоскостью любого поперечного сечения наз. нейтральной линией. При И. прямого бруса нейтральный слой проходит через центры тяжести поперечных сечений и наз. нейтральной осью (линия О-О на рис. 2, в). В сечении по одну сторону от нейтральной оси возникают растягивающие, а по другую - сжимающие нормальные напряжения s, возрастающие по мере удаления от нейтральной оси по линейному закону (рис. 2, г)s=Му/I, где y - расстояние от нейтральной оси до рассматриваемого волокна поперечного сечения, а I - момент инерции поперечного сечения относительно нейтральной оси. Для балок из материалов, одинаково работающих на растяжение и сжатие, в поперечных сечениях, симметричных относительно нейтральной оси, наибольшие нормальные напряжения в крайних волокнах определяются по ф-ле: s=bM/W, где W=2I/h - момент сопротивления поперечного сечения, h/2 - половина высоты сечения. При поперечном И. в сечениях бруса действуют как изгибающий момент, так и поперечная сила, к-рые в зависимости от вида нагрузок изменяются по длине бруса. Характер их изменения изображается графически с помощью эпюр изгибающих моментов М и поперечных сил Q (рис. 3). В поперечных сечениях кроме нормальных напряжений а возникают также касательные напряжения т. Нормальные напряжения определяются теми же ф-лами, как и при чистом И. Касательные напряжения т для заданной точки бруса (рис. 4) получаются равными в площадках, расположенных в плоскости поперечного сечения, и в площадках, параллельных нейтральному слою: по ширине сечения касательные напряжения принимаются одинаковыми и определяются ф-лой Журавского: t=QS/Ib, где Q - поперечная сила в сечении, S - статич. момент относительно нейтральной оси той части сечения, к-рая лежит выше (или ниже) рассматриваемой точки, ">b - ширина сечения на уровне этой точки. Наибольшие t имеют место у нейтральной оси бруса.
3-41.jpg
Рис. 3. Эпюры М и Q для балки, нагруженной одним сосредоточенным грузом Р и равномерно распределённой нагрузкой интенсивностью q.

При И. ось бруса искривляется, её кривизна определяется выражением 1/r=M/EI, где r -радиус кривизны изогнутой оси в рассматриваемом сечении, Е - модуль продольной упругости материала (модуль Юнга). Ордината v изогнутой оси наз. прогибом в данной точке. При малых прогибах первоначально прямых брусьев зависимость между прогибом и изгибающим моментом выражается ур-нием: d2v/dx2=M/EI, интегрированием к-рого находят выражение для изогнутой оси бруса v=f(x).
3-42.jpg
Рис. 4. Касательные напряжения при поперечном изгибе бруса: а - элемент ABB1A1, вырезаемый из бруса при исследовании касательных напряжений; б - сечение бруса; в - эпюра касательных напряжений.

Косой И. сводится к сочетанию двух плоских И., к-рые получаются разложением внешних сил (или изгибающих моментов) на составляющие по гл. осям инерции сечения. Нормальные напряжения обоих плоских И. складываются алгебраически и для произвольной точки сечения выражаются ф-лой:

s=(Mx/Ix).y+(My/Iy).x,

где Мх, My - изгибающие моменты в сечении относительно гл. осей х и у; Ix, 1у - моменты инерции сечения относительно гл. осей; х, у - координаты той точки поперечного сечения, в к-рой определяется напряжение. В кривых брусьях большой кривизны, у к-рых отношение радиуса кривизны r к высоте сечения h меньше 4-6, наличие кривизны резко сказывается на распределении напряжений. При чистом И. такого бруса нейтральная ось смещается от геометрич. оси к центру кривизны бруса, нормальные напряжения распределяются по высоте сечения по гиперболич. закону (рис. 5, а) и резко возрастают по мере приближения к внутр. краю бруса.
3-43.jpg
Рис. 5. Распределение напряжений: а - при чистом изгибе бруса большой кривизны; б - в крюке подъёмного приспособления.

Напр., для крюка подъёмного приспособления наибольшие напряжения возникают в сечении т - п (рис. 5, б) и складываются из двух частей: от растяжения силой Р и от И. моментом М=Рr, где Р - нагрузка на крюк, r - радиус кривизны оси бруса в области сечения т - п. Для произвольной точки сечения т - п нормальные напряжения определяются ф-лой:

s=P/F+(M/S)(y/(r-y)),

где F - площадь поперечного сечения, S - статич. момент этой площади относительно нейтральной линии, у - расстояние от рассматриваемой точки до нейтральной оси, r - радиус кривизны нейтрального слоя, зависящий от формы и размеров поперечного сечения и кривизны бруса. И. бруса с учётом пластич. деформаций можно исследовать приближённо, принимая, что материал одинаково работает на растяжение и сжатие, и беря наиболее простую зависимость между напряжениями и деформациями, напр., в виде ломаной линии, состоящей из наклонного участка при упругой и горизонтального - при пластич. деформации (рис. 6). При постепенном возрастании нагрузки в сечении с наибольшим изгибающим моментом сначала возникают упругие деформации, затем в крайних точках сечения появляются пластич. области (рис. 7), к-рые, постепенно увеличиваясь, полностью охватывают обе половины сечения. Такое состояние наз. пластическим шарниром; ему соответствует предельный изгибающий момент, по которому определяют предельную нагрузку на брус.
3-44.jpg
Рис. 6. Зависимость между напряжением s и деформацией e при упругопластическом изгибе бруса.
3-45.jpg
Рис. 7. Возникновение пластического шарнира в сечении с наибольшим изгибающим моментом.

При точном исследовании И. с учётом пластич. деформаций пользуются более сложными методами, изучая весь процесс деформирования бруса, его разгрузку и повторное нагружение. Исследование осложняется при необходимости учитывать влияние на И. времени, высоких температур, а также специфич. свойств материала, напр, в случае брусьев, выполняемых из пластмасс, следует учитывать реологич. эффекты (см. Реология).

Литература по изгибной деформации

  1. Беляев Н. М., Сопротивление материалов, 15 изд., М., 1976;
  2. Тимошенко С. П., Г у д ь е р Д ж., Теория упругости, пер. с англ., М., 1975;
  3. Терегулов И. Г., Сопротивление материалов и основы теории упругости и пластичности, М., 1984.
к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

Знаете ли Вы, что такое "Большой Взрыв"?
Согласно рупору релятивистской идеологии Википедии "Большой взрыв (англ. Big Bang) - это космологическая модель, описывающая раннее развитие Вселенной, а именно - начало расширения Вселенной, перед которым Вселенная находилась в сингулярном состоянии. Обычно сейчас автоматически сочетают теорию Большого взрыва и модель горячей Вселенной, но эти концепции независимы и исторически существовало также представление о холодной начальной Вселенной вблизи Большого взрыва. Именно сочетание теории Большого взрыва с теорией горячей Вселенной, подкрепляемое существованием реликтового излучения..."
В этой тираде количество нонсенсов (бессмыслиц) больше, чем количество предложений, иначе просто трудно запутать сознание обывателя до такой степени, чтобы он поверил в эту ахинею.
На самом деле взорваться что-либо может только в уже имеющемся пространстве.
Без этого никакого взрыва в принципе быть не может, так как "взрыв" - понятие, применимое только внутри уже имеющегося пространства. А раз так, то есть, если пространство вселенной уже было до БВ, то БВ не может быть началом Вселенной в принципе. Это во-первых.
Во-вторых, Вселенная - это не обычный конечный объект с границами, это сама бесконечность во времени и пространстве. У нее нет начала и конца, а также пространственных границ уже по ее определению: она есть всё (потому и называется Вселенной).
В третьих, фраза "представление о холодной начальной Вселенной вблизи Большого взрыва" тоже есть сплошной нонсенс.
Что могло быть "вблизи Большого взрыва", если самой Вселенной там еще не было? Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
Bourabai Research - Технологии XXI века Bourabai Research Institution