к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Маятник математический. Физический маятник

Маятник математический

Маятник математический - упрощенная математическая модель гравитационного маятника, совершающего колебания под действием силы тяжести. Простейший маятник состоит из небольшого массивного груза С, подвешенного на нити (или лёгком стержне) длиной l. Если считать нить нерастяжимой и пренебречь размерами груза по сравнению с длиной нити, а массой нити по сравнению с массой груза, то груз на нити можно рассматривать как материальную точку, находящуюся на неизменном расстоянии l от точки подвеса О. (рис. 1, а).

3015-1.jpg

Такой маятник называется круговым математическим маятником. Если, как это обычно имеет место, колеблющееся тело нельзя рассматривать как материальную точку, то маятник называется физическим (реальным).

Математический маятник (круговой)

Если маятник, отклонённый от равновесного положения C0, отпустить без нач. скорости или сообщить точке С скорость, перпендикулярную ОС и лежащую в плоскости нач. отклонения, то маятник будет совершать колебания в одной вертнк. плоскости (плоский математический маятник). Если пренебречь трением в оси и сопротивлением воздуха (что в дальнейшем всегда предполагается), то для маятника будет иметь место закон сохранения механич. энергии, к-рый даёт:

3015-2.jpg

где3015-3.jpg- скорость точки С, 3015-4.jpg-её координата, отсчитываемая вертикально вверх от равновесного положения, - 3015-5.jpg- угол отклонения M. от вертикали, g - ускорение силы тяжести, h - постоянная, пропорциональная полной механич. энергии M. и определяемая нач. значениями3015-6.jpg

Когда сообщённая нач. энергия маятника такова, что3015-7.jpg (для груза на стержне) или3015-8.jpg(для груза на нити), то маятник будет совершать колебания с угл. амплитудой 3015-9.jpg определяемой равенством 3015-10.jpg Эти колебания не являются гармоническими; их период T зависит от амплитуды3015-11.jpgи определяется след, ф-лой, получаемой из ур-ния (1):

3015-12.jpg

Когда указанные выше условия для k не выполняются, то M. не совершает колебат. движения. Напр., при 3015-13.jpg груз на стержне будет описывать окружность. Когда сообщённая M. нач. энергия очень мала3015-14.jpg M. совершает малые колебания, близкие к гармоническим; период малых колебаний можно приближённо считать равным:

3015-15.jpg

т. е. не зависящим от амплитуды (колебания изохронны). Ф-ла (3) по сравнению с (2) даёт погрешность до 0,05% при3015-16.jpgи до 1% при3015-17.jpg. Эти резуль-

таты справедливы для инерциальпой системы отсчёта. По отношению к Земле вследствие её суточного вращения плоскость качаний M. медленно изменяет своё направление (см. Фуко маятник).

Если отклонённому маятнику сообщить нач. скорость, не лежащую в плоскости нач. отклонения, то точка С будет описывать на сфере радиуса l кривые, заключённые между 2 параллелями3015-18.jpgгде значения 3015-19.jpg зависят от нач. условий (сферический маятник, рис. 2, я). В частном случае, при 3015-20.jpg точка С будет описывать горизонтальную окружность (конический M., рис. 2, б). Из некруговых маятников особый интерес представляет циклоидальный маятник ,колебания к-рого изохронны при любой величине амплитуды.

3015-21.jpg

Физический маятник

Физическим маятником обычно наз. твёрдое тело, совершающее под действием силы тяжести колебания вокруг горизонтальной оси подвеса (рис. 1, б). Движение такого M. вполне аналогично движению кругового матем. M. Период конечных или малых колебаний физ. M. определяется соответственно ф-лами (2) или (3), в к-рых l следует заменить величиной 3015-22.jpg где т - масса M., a - расстояние от центра тяжести С до оси подвеса, I - момент инерции M. относительно оси подвеса, 3015-23.jpg- радиус инерции относительно оси, параллельной оси подвеса и проходящей через С. Период зависит от положения оси подвеса относительно центра тяжести и будет наименьшим при3015-24.jpg Величина l0, к-рая всегда больше а, наз. приведённой длиной физ. M. Если отложить вдоль линии ОС отрезок OK = l0, то полученная точка K паз. центром качаний физ. M. (матем. M. с массой, сосредоточенной в точке К, будет колебаться с тем же периодом, что и данный физ. M.). Точка оси подвеса О и центр качаний K обладают свойством взаимности: если M. подвесить так, чтобы ось подвеса прошла через K, то точка О станет центром качаний и период колебаний M. не изменится. На этом свойстве основано устройство оборотного M., применяемого для определения ускорения силы тяжести.

Свойствами M. широко пользуются в разл. приборах: часах, приборах для определения ускорения силы тяжести (маятниковый прибор), ускорений движущихся тел, колебаний земной коры (сейсмограф), в гироскопич. приборах, приборах для эксперим. определения моментов инерции тел и др.

Литература по маятникам

  1. Жуковский H. E., Теоретическая механика, 2 изд., M.- Л., 1952;
  2. Николаи E. Л., Теоретическая механика, ч. 2 - Динамика, 13 изд., M., 1958;
  3. Лойцянский Л. Г., Лурье А. И., Курс теоретической механики, т. 2 - Динамика, в изд., M., 1983.
  4. Галилей Г., Соч., [пер. с итал.], т. 1, M.- Л., 1934;
  5. Эйлер Л., Основы динамики точки, пер. с лат., М.- Л., 1938;
  6. Д-Аламбер Щ., Динамика, пер. с франц., M.- Л., 1950;
  7. Лагранж Ж., Аналитическая механика, пер. с франц., т. 1-2, 2 изд., M.- Л., 1950;
  8. Жуковский H. E., Теоретическая механика, 2 изд., M.- Л., 1952;
  9. Бухгольц H. H., Основной курс теоретической механики, ч. 1, 9 изд., ч. 2, 6 изд., M., 1972;
  10. История механики с древнейших времен до конца XVIII в., M., 1971;
  11. Веселовский И. H., Очерки по истории теоретической механики, M., 1974;
  12. Механика в СССР за 50 лет, т. 1-3, M., 1968-72;
  13. Кочин H. E., Кибель И. A., Pозе H. В., Теоретическая гидромеханика, ч. 1, 6 изд., ч. 2, 4 изд., M., 1963;
  14. Прандтль Л., Гидроаэромеханика, пер. с нем., M., 1949;
  15. Лойцянский Л. Г., Механика жидкости и газа, 5 изд., M., 1978,
  16. Кларк Д., Макчесни M., Динамика реальных газов, пер. с англ., M., 1967;
  17. Седов Л. И., Механика сплошной среды, т. 1-2, 4 изд., M., 1983-84.
  18. Ляв А. Математическая теория упругости, пер. с англ., М.- Л., 1935;
  19. Стретт Дж. В. (лорд Рэлей), Теория звука, пер. с англ., 2 изд., т. 1-2, М., 1955;
  20. Боли Б., Уэйнер Дж., Теория температурных напряжений, пер. с англ., М., 1964;
  21. Трехмерные задачи математической теории упругости и термоупругости, под ред. В. Д. Купрадзе, 2 изд., М., 1976;
  22. Тимошенко С. П., Гудьер Дж., Теория упругости, пер. с англ., 2 изд., М., 1979;
  23. Хан X., Теория упругости. Основы линейной теории и её применение, пер. с нем., М., 1988.
  24. Соколовский В. В., Теория пластичности, 3 изд., М., 1969;
  25. Прагер В., Xодж Ф., Теория идеально пластических тел, пер. с англ., М., 1956;
  26. Xилл Р., Математическая теория пластичности, пер. с англ., М., 1956;
  27. Кадашевич Ю. И., Новожилов В. В., Теория пластичности, учитывающая остаточные микронапряжения, "ПММ", 1958, т. 22, с. 78;
  28. Ильюшин А. А., Пластичность. Основы общей математической теории, М., 1963;
  29. Ивлев Д. Д., Быковцев Г. И., Теория упрочняющегося пластического тела, М., 1971;
  30. Ревуженко А. Ф., Чанышев А. И., Шемякин Е. И., Математические модели упругопластических тел, в сб.: Актуальные проблемы вычислительной математики и математического моделирования, Новосиб., 1985.

С. M. Тарг

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

Знаете ли Вы, что в 1965 году два американца Пензиас (эмигрант из Германии) и Вильсон заявили, что они открыли излучение космоса. Через несколько лет им дали Нобелевскую премию, как-будто никто не знал работ Э. Регенера, измерившего температуру космического пространства с помощью запуска болометра в стратосферу в 1933 г.? Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
Bourabai Research - Технологии XXI века Bourabai Research Institution