к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Трековые детекторы частиц

Трековые детекторы частиц - детекторы заряж. частиц и ядерных фрагментов, регистрация к-рых сопровождается появлением наблюдаемых следов (треков), повторяющих траекторию частицы или фрагмента. По этой причине трековые детекторы частиц часто наз. визуальными. К трековым детекторам частиц относят конденсационные (Вильсона и диффузионная) камеры, пузырьковую, стримерную и искровую камеры, ядерные фотоэмульсии и твердотельные плёночные детекторы. Механизмы действия трековых детекторов частиц разнообразны. В Вильсона камере и диффузионной камере - это конденсация пересыщенного пара на ионах, образованных ионизирующей частицей в газе; в пузырьковой камере - вскипание перегретой жидкости в точках высокого локального энерговьтделения 5030-93.jpg на траектории частицы; в стримерной камере - появление пространственно локализованных слабосветящихся электронных лавин (стримеров) размером 5030-94.jpg к-рые вырастают в сильном импульсном электрич. поле на сгустках ионизации, созданных в газе заряж. частицей. В искровой камере вдоль колонки лавин (стримеров) происходит искровой пробой, так что след представляет собой яркий тонкий плазменный шнур. Треки в ядерной фотографической эмульсии возникают вследствие активации ионизирующей частицей микрокристаллов AgBr и образования на них при последующем проявлении зёрен металлич. серебра. В диэлектрических детекторах (стёкла, слюда, лексан и нек-рые др. органич. полимеры) трек образуется в результате локального разрушения структуры материала сильно ионизирующей частицей, что выявляется в процессе травления.

Регистрация следов в трековых детекторах частиц производится прямым фотографированием (в конденсационных, пузырьковых, искровых камерах), фотографированием с предварительным электронно-оптич. усилением изображения (в стримерных камерах); с помощью микроскопа (ядерные фотоэмульсии и плёночные детекторы).

Следы однократно заряж. релятивистских частиц в большинстве трековых детекторах частиц имеют характерную структуру, т. е. состоят из отд. элементов (капелек, пузырьков, светящихся лавин, или стримеров, зёрен) и их сгустков. В искровой камере всегда (а в др. детекторах при большой плотности ионизации вдоль следа) треки представляют собой сплошные, почти бесструктурные образования.

5030-95.jpg

Фотографии следов быстрых заряженных частиц в трековых детекторах: a - камера Вильсона; б-пузырьковая камера; в - искровая камера; г-стримерная камера; д -ядерная фотоэмульсия.

Малые размеры структурных элементов следа (ок. 1 мкм в ядерных фотоэмульсиях, 10-40 мкм в конденсационных и пузырьковых камерах, 0,05-1,0 мм в стримерных и искровых камерах) позволяют применять трековые детекторы частиц в качестве координатных детекторов (позиционно-чувствительных) для измерения пространственно-угл. характеристик траекторий частиц, а также их импульсов (по отклонению в магн. поле). Изучение же многократного "рассеяния" трека и его структуры, т. е. числа или др. характеристик распределения элементов следа или разрывов между ними, даёт возможность судить о скорости и заряде частицы. Однако осн. достоинством Т. д. ч. является наглядность и достоверность регистрации пространств. картины взаимодействия частиц, в связи с чем трековые детекторы частиц нередко используют в качестве т. н. "вершинных" детекторов в крупномасштабных комбинированных системах детекторов.

К недостаткам трековых детекторах частиц относятся необходимость поиска событий и сложность анализа изображения следа. Автоматизация этих процессов сопряжена с трудностями, что сдерживает скорость просмотра и обработки больших массивов данных. Благодаря компьютеризации сбора и обработки информации различие между трековыми и др. детекторами заряж. частиц, обладающими мелкоячеистой структурой (многопроволочные пропорциональные камеры и дрейфовые камеры, сцинтилляционные детекторы на волокнах и стриповые полупроводниковые детекторы), стирается из-за возможности визуализации зарегистр)рованных ими координат следов на экране видеодисплея.

В развитии ядерной физики, физики элементарных частиц трековые детекторы частиц сыграли выдающуюся роль. С их помощью были обнаружены ядерные реакции и реакции взаимодействия и распада элементарных частиц, а также открыт ряд элементарных частиц - позитрон, мюон, заряж. пионы, странные и очарованные частицы. Трековые детекторы частиц (за исключением конденсационных камер) широко используются и в совр. ядерно-физ. экспериментах.

Литература по трековым детекторам частиц

  1. Беккерман И. М., Невидимое оставляет след, 2 изд., М., 1970;
  2. Fabian С., Fisher Н., Particle detectors, "Repts Progr. Phys.", 1980, v. 43, p. 1003;
  3. Leo W. R., Techniques for nuclear and particle physics experiments: a how - to approach, B.- fa. o.], 1987;
  4. Будагов Ю. А., Мерзон Г. И., Ситар Б., Чечин В. А., Ионизационные измерения в физике высоких энергий, М., 1988;
  5. Sitar В., Merson G. I., Chechin V. А., Budagov Yu. А., lonization measurements in high-energy physics, B.- [a. o.], 1993.

Г. И. Мерзон

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

Знаете ли Вы, в чем ложность понятия "физический вакуум"?

Физический вакуум - понятие релятивистской квантовой физики, под ним там понимают низшее (основное) энергетическое состояние квантованного поля, обладающее нулевыми импульсом, моментом импульса и другими квантовыми числами. Физическим вакуумом релятивистские теоретики называют полностью лишённое вещества пространство, заполненное неизмеряемым, а значит, лишь воображаемым полем. Такое состояние по мнению релятивистов не является абсолютной пустотой, но пространством, заполненным некими фантомными (виртуальными) частицами. Релятивистская квантовая теория поля утверждает, что, в согласии с принципом неопределённости Гейзенберга, в физическом вакууме постоянно рождаются и исчезают виртуальные, то есть кажущиеся (кому кажущиеся?), частицы: происходят так называемые нулевые колебания полей. Виртуальные частицы физического вакуума, а следовательно, он сам, по определению не имеют системы отсчета, так как в противном случае нарушался бы принцип относительности Эйнштейна, на котором основывается теория относительности (то есть стала бы возможной абсолютная система измерения с отсчетом от частиц физического вакуума, что в свою очередь однозначно опровергло бы принцип относительности, на котором постороена СТО). Таким образом, физический вакуум и его частицы не есть элементы физического мира, но лишь элементы теории относительности, которые существуют не в реальном мире, но лишь в релятивистских формулах, нарушая при этом принцип причинности (возникают и исчезают беспричинно), принцип объективности (виртуальные частицы можно считать в зависимсоти от желания теоретика либо существующими, либо не существующими), принцип фактической измеримости (не наблюдаемы, не имеют своей ИСО).

Когда тот или иной физик использует понятие "физический вакуум", он либо не понимает абсурдности этого термина, либо лукавит, являясь скрытым или явным приверженцем релятивистской идеологии.

Понять абсурдность этого понятия легче всего обратившись к истокам его возникновения. Рождено оно было Полем Дираком в 1930-х, когда стало ясно, что отрицание эфира в чистом виде, как это делал великий математик, но посредственный физик Анри Пуанкаре, уже нельзя. Слишком много фактов противоречит этому.

Для защиты релятивизма Поль Дирак ввел афизическое и алогичное понятие отрицательной энергии, а затем и существование "моря" двух компенсирующих друг друга энергий в вакууме - положительной и отрицательной, а также "моря" компенсирующих друг друга частиц - виртуальных (то есть кажущихся) электронов и позитронов в вакууме.

Однако такая постановка является внутренне противоречивой (виртуальные частицы ненаблюдаемы и их по произволу можно считать в одном случае отсутствующими, а в другом - присутствующими) и противоречащей релятивизму (то есть отрицанию эфира, так как при наличии таких частиц в вакууме релятивизм уже просто невозможен). Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
Bourabai Research - Технологии XXI века Bourabai Research Institution