к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Атомный радиус

Атомный радиус - характеристика атома, позволяющая приближённо оценивать межатомные (межъядерные) расстояния в молекулах и кристаллах. T. к. атомы не имеют чётких границ, при введении понятия "А. р." подразумевают, что 90-98% электронной плотности атома заключено в сфере этого радиуса. Атомные радиусы имеют порядок 0,1 HM, однако даже небольшие различия в их значениях могут определять структуру построенных из них кристаллов, сказываются на равновесной геометрии молекул и т. д. Для мн. задач кратчайшие расстояния между атомами в молекулах и конденсированных средах можно считать суммой их атомных радиусов, однако такая аддитивность весьма приближённа и выполняется не во всех случаях. В зависимости от того, какие силы действуют между атомами (см. Межатомное взаимодействие), различают металлические, ионные, ковалентные и ван-дер-ваальсовы атомные радиусы.

Металлич. радиусы считаются равными половине кратчайшего расстояния между атомами в кристаллич. структуре элемента-металла, они зависят от координац. числа К. Если принять А. р. при К=12 за единицу, то при К=8, 6 и 4 А. р. того же элемента соотв. равны 0,98; 0,96; 0,88. Близость значений А. р. разных металлов - необходимое (хотя и недостаточное) условие взаимной растворимости металлов по типу замещения. Так, жидкие К и Li обычно не смешиваются и образуют два жидких слоя, а К с Rb и Cs образуют непрерывный ряд твёрдых растворов (А. р. Li, К, Pb и Cs равны соотв. 0,155; 0,236; 0,248; 0,268 HM). Аддитивность А. р. позволяет приближённо предсказывать параметры кристаллич. решёток интерметаллич. соединений.

Ионные радиусы используют для приближённых оценок межъядерных расстояний в ионных кристаллах. При этом считают, что расстояние между ближайшими катионом и анионом равно сумме их ионных радиусов. О точности, с к-рой выполняется указанная аддитивность А. р., можно судить на основании кратчайших межъядерных расстояний в кристаллах галогенидов щелочных металлов, приведённых ниже:

KF 0,266

KBr 0,329

NaF 0.231

NaBr 0,298

KCl 0,314

KI 0,353

NaCl 0,281

NaI 0,323

Разность А. р. ионов111998-335.jpg , полученная сравнением межъядерных расстояний в KF и NaF, составляет 0,035 нм (А. р. иона 111998-336.jpg в кристаллах KF в NaF предполагаются одинаковыми), а для соединений KCl и NaCl она равна 0,033 HM, из соединений KBr и NaBr - 0,031 HM и из соединений KI и NaI - 0,030 HM. T. о., типичная погрешность определения межъядерных расстояний в ионных кристаллах по А. р.~ 0,001 нм.

Существует неск. систем ионных А. р., отличающихся значениями А. р. индивидуальных ионов, но приводящих к примерно одинаковым межъядерным расстояниям. Впервые работа по определению ионных А. р. была проделана в 20-х гг. 20 в. В. M. Гольдшмидтом (V. M. Goldschmidt), опиравшимся, с одной стороны, на межъядерные расстояния в кристаллах, измеренные методами рентгеновского структурного анализа, а с другой - на значения А. р. 111998-337.jpg и 111998-338.jpg, определённые методом рефрактометрии (соотв. 0,133 и 0,132 HM). Большинство др. систем также опирается на определённые дифракц. методами межъядерные расстояния в кристаллах и на нек-рое "реперное" значение А. р. определ. иона. В наиб. широко известной системе По-линга этим реперным значением является А. р.111998-339.jpg (0,140 HM). В системе Белова и Бокия, считающейся одной из наиб. надёжных, А. р. 02- принимается равным 0,136 HM. Ниже приведены значения радиусов нек-рых ионов:

в системе Гольдшмидта

в системе Полинга

в системе Гольдшмидта

в системе Полинга

Li+

0,078

0,060

Ba2+

0,143

0,135

Na+

0,098

0,095

F-

0,133

0,136

К+

0,133

0,133

Cl-

0,181

0,181

Rb+

0,149

0,148

Br-

0,196

0,195

Cs+

0,165

0,169

I-

0,220

0,216

Mg2+

0,078

0,065

O2-

0,132

0,140

Ca2+

0,106

0,099

S2-

0,174

0,184

Sr2+

0,127

0,113




Для ионных кристаллов, имеющих одинаковые координац. числа, ср. отклонение суммы А. р., вычисленной по приведённым выше А. р., от опытных значений кратчайших межъядерных расстояний в ионных кристаллах составляет 0,001-0,002 HM.

В 70-80-х гг. были сделаны попытки прямого определения А. р. ионов путём измерения электронной плотности методами рентгеновского структурного анализа при условии, что минимум электронной плотности на линии, соединяющей ядра, принимается за границу ионов. Дифракц. измерения для кристаллов галогенидов щелочных металлов позволили получить А. р. катионов Li+ , Na+ , К+ , Rb+ и Cs+ , равные соотв. 0,094; 0,117; 0,149; 0,163; 0,186 нм, а А. р. анионов F-, Cl-, Br-, I- - равные соотв. 0,116; 0,164; 0,180; 0,205 HM. T. о. дифракц. измерения приводят к завышенным (по сравнению с традиционными, приведёнными выше) значениям А. р. катионов и к заниженным значениям А. р. анионов. А. р., найденные путём измерения распределения электронной плотности в кристалле, нельзя переносить от одного соединения к другому, а отклонения от их аддитивности слишком велики, поэтому такие А. р. не могут быть использованы для предсказания межъядерных расстояний.

Ковалентный радиус определяется как половина длины одинарной хим. связи X - X (где X - элемент-неметалл). Для галогенов ковалентный А. р.- это половина межъядерного расстояния X - X в молекуле X2, для S и Se - половина расстояния X - X в X8, для углерода - половина кратчайшего расстояния С - С в кристалле алмаза. Ковалентные А. р. F, Cl, Br, I, S, Se и С соотв. равны 0,064; 0,099; 0,114; 0,133; 0,104; 0,117 и 0,077 нм. Для атома H А. р. принимают равным 0,030 HM (хотя половина длины связи H - H в молекуле H2 равна 0,037 HM). Аддитивность ковалентных А. р. позволяет предсказывать кратчайшие межъядерные расстояния (длины связей) в многоатомных молекулах. Так, согласно этому правилу длина связи C-Cl должна быть равной 0,176 HM, а экспериментально полученное для этой величины значение в молекуле CCl4 равно 0,177 HM. Ниже приведены ковалентные А. р. для атомов нек-рых элементов, вычисленные на основании длин одинарных связей:

111998-340.jpg

В молекулах, имеющих двойные или тройные хим. связи, используют уменьшенные значения ковалентных А. р., ибо кратные связи короче одинарных. Ниже приведены ковалентные радиусы атомов при образовании кратных связей:

111998-341.jpg

Ван-дер-ваальсовы радиусы определяют эфф. размеры атомов благородных газов. Кроме того, ван-дер-ваальсовыми А. р. считают половину межъядерного расстояния между ближайшими одноимёнными атомами, не связанными между собой хим. связью и принадлежащими разным молекулам (напр., в молекулярных кристаллах). При сближении атомов на расстояние, меньшее суммы их ван-дер-ваальсовых радиусов, возникает сильное межатомное отталкивание. Поэтому ван-дер-ваальсовы А. р. характеризуют минимальные допустимые контакты атомов, принадлежащих разным молекулам. Ниже приведены значения ван-дер-ваальсовых атомных радиусов для нек-рых атомов:

111998-342.jpg

Ван-дер-ваальсовы А. р. в ср. на 0,08 нм больше ковалентных А. р. Ионный А. р. для отрицательно заряженного иона (напр., Cl-) практически совпадает с ван-дер-ваальсовым радиусом атома в нейтральном состоянии.

Знание ван-дер-ваальсовых А. р. позволяет определять форму молекул, конформации молекул и их упаковку в молекулярных кристаллах. Согласно принципу плотной упаковки, молекулы, образуя кристалл, располагаются таким образом, что "выступы" одной молекулы входят во "впадины" другой. Пользуясь этим принципом, можно интерпретировать имеющиеся кристаллографические данные, а в ряде случаев и предсказывать структуру молекулярных кристаллов.

Литература по атомным радиусам

  1. Бокий Г. Б., Кристаллохимия, 3 изд., M., 1971;
  2. Полинг Л., Общая химия, пер. с англ., M., 1974;
  3. Кемпбел Дж., Современная общая химия, пер. с англ., т. 1, M., 1975;
  4. Картмелл Э., Фоулз Г. В. А. Валентность и строение молекул, пер. с англ., M., 1979.

В. Г. Дашевский

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

Знаете ли Вы, в чем фокус эксперимента Майкельсона?

Эксперимент А. Майкельсона, Майкельсона - Морли - действительно является цирковым фокусом, загипнотизировавшим физиков на 120 лет.

Дело в том, что в его постановке и выводах произведена подмена, аналогичная подмене в школьной шуточной задачке на сообразительность, в которой спрашивается:
- Cколько яблок на березе, если на одной ветке их 5, на другой ветке - 10 и так далее
При этом внимание учеников намеренно отвлекается от того основополагающего факта, что на березе яблоки не растут, в принципе.

В эксперименте Майкельсона ставится вопрос о движении эфира относительно покоящегося в лабораторной системе интерферометра. Однако, если мы ищем эфир, как базовую материю, из которой состоит всё вещество интерферометра, лаборатории, да и Земли в целом, то, естественно, эфир тоже будет неподвижен, так как земное вещество есть всего навсего определенным образом структурированный эфир, и никак не может двигаться относительно самого себя.

Удивительно, что этот цирковой трюк овладел на 120 лет умами физиков на полном серьезе, хотя его прототипы есть в сказках-небылицах всех народов всех времен, включая барона Мюнхаузена, вытащившего себя за волосы из болота, и призванных показать детям возможные жульничества и тем защитить их во взрослой жизни. Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
Bourabai Research - Технологии XXI века Bourabai Research Institution