к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Капельная модель ядра

Капельная модель ядра - одна из самых ранних моделей атомного ядра, предложенная Н. Бором (N. Bohr) и К. Ф. фон Вайцзеккером (С. F. von Weizsacker) и развитая Дж. Уилером (J. Wheeler), Я. И. Френкелем и др. (1935-39), в к-рой ядро рассматривается как практически несжимаемая капля жидкости чрезвычайно большой плотности. Полная масса ядра, состоящего из Z протонов и N=A-Z нейтронов (А - число нуклонов), меньше суммы масс составляющих его нуклонов на величину энергии связи, удерживающей нуклоны в ядре. Ср. энергия связи в расчёте на 1 нуклон почти для всех стабильных ядер при А>50 постоянна (~8-9 МэВ, рис. 1). Это постоянство, а также постоянство плотности массы для разных ядер (объём ядра пропорционален числу нуклонов А) непосредственно привели к К. м. я. К. м. я. нашла своё выражение в полуэмпирич. ф-ле для энергии связи ядра (Вайцзеккера формула:)
012-119.jpg
Здесь as, ас, аT, ар - константы (см. ниже), av - энергия связи на 1 нуклон для бесконечно большого ядра, не имеющего поверхности (ядерной материи), а первый член суммы - объёмная энергия. Нуклоны, располагающиеся на поверхности ядра, имеют меньшее число связей с др. нуклонами, чем внутренние. Поэтому для реального ядра конечных размеров нужно учитывать поверхностный вклад в Eсв, пропорциональный поверхности ядра, т. е. А2/3, и уменьшающий полную энергию связи (второй член суммы).
012-120.jpg
Рис. 1. Энергия cвязи в расчёте на 1 нуклон для разных ядер.

Если учесть только объёмное и поверхностное слагаемые, то все ядра - изобары должны быть устойчивыми независимо от значений Z и N. В действительности устойчивы в области лёгких ядер лишь ядра с Z=N, а в области тяжёлых ядер - с N>Z. Это учитывается введением 3-го (кулоновская энергия) и 4-го (энергия симметрии ядра) слагаемых в (1). Слагаемое, отвечающее кулоновской энергии, возникает из-за отталкивания протонов, что должно благоприятствовать появлению стабильных нейтронно-избыточных ядер - изобар. Если ядро - шар радиусом rс~A1/3 и протоны в нём распределены однородно, то кулоновская энергия ядра ~Z2/A1/3, т. е. тем меньше, чем меньше Z. Эксперим. факты, однако, свидетельствуют о том, что стабильны не все ядра - изобары с избытком нейтронов, а только заключённые в узкой полосе на диаграмме NZ (рис. 2).
012-121.jpg
Рис. 2. Полоса стабильных ядер на NZ-диаграмме; каждое стабильное ядро - зачернённый квадратик; сплошная линия соответствовала бы Z=N.

012-122.jpg
Рис. 3. Зависимость дефекта массы D от Z для изобарных ядер с А=127.

Это учитывается т. н. изотопич. членом или энергией симметрии (4-е слагаемое), роль к-рой иллюстрирует кривая зависимости дефекта масс D от Z для всех изобар с определённым А (рис. 3). Ядро, лежащее на дне "долины", стабильно, ядра, располагающиеся на её склонах, не стабильны, они "скатываются" на дно в результате b-распада. Энергия симметрии возникает по той причине, что запрет Паули ослабляет взаимодействие между одноимёнными нуклонами. Т. о., энергия симметрии описывает тенденцию ядра быть наиб, стабильным при A=2Z. Однако кулоновское отталкивание протонов препятствует этому, так что стабильные тяжёлые ядра имеют A >2Z. Энергия симметрии более сильно зависит от относит. плотности нейтронов и протонов, чем кулоновская энергия, что приводит с учётом малой сжимаемости ядерной жидкости к почти постоянной плотности заряда внутри ядра. При более детальном изучении энергии связи ядер выяснилось, что Eсв систематически изменяется в зависимости от того, чётные или нечётные Z и N. Это можно объяснить наличием парных корреляций нуклонов между одноимёнными нуклонами, что приводит к дополнит. энергии связи и описывается последним слагаемым в ф-ле (1): d=0 для нечётного А, d=-1 для чётных А и чётных Z и d=1 для чётных А и нечётных Z. Все константы в ф-ле (1) определяются "подгонкой" энергии связи под экспериментально измеренные массы ядер: av=15,56 МэВ, аs=17,23 МэВ, ас=0,697 (для rс=1,24 фм) МэВ, aT=23,28 МэВ, ap=12 МэВ. В среднем ф-ла (1) хорошо описывает массы ядер. Отклонения ([1%, т. е. ~10-20 МэВ) наблюдаются вблизи магических ядер, к-рые оказываются более сильно связанными, чем в среднем. Отклонения связаны с оболочечной структурой и деформацией ядер (см. Оболочечная модель ядра. Деформированные ядра). Оболочечная поправка к энергии связи возбуждённого ядра быстро уменьшается с увеличением возбуждения. Для ядер с А>200 оболочечная поправка практически исчезает при энергии возбуждения 30-50 МэВ. К. м. я. описывает процесс деления ядер как результат квадрупольной деформации поверхности капли, приводящей к образованию двух ядер [Л. Майтнер (L. Meitner), О. Фриш (О. Frisch), H. Бор, Уилер, Френкель]. Для несжимаемой ядерной жидкости с резким краем деформация капли изменяет только поверхностную Es и кулоновскую Eс энергии, так что поведение капли при делении определяется одним безразмерным параметром:
012-123.jpg
наз. параметром делимости. Здесь E0с и E0s - кулоновская и поверхностная энергии для сферич. ядра (в К. м. я. ядро в основном состоянии имеет сферич. форму). При x<1 возникает потенц. барьер (барьер деления) Ef, к-рый при 1-хЪ1 равен:
012-124.jpg
На вершине барьера капля имеет форму вытянутого сфероида, а при меньших значениях х - гантелеобразную форму. Барьер деления увеличивается с уменьшением х. Для ядер в области W-Hg Ef~25-20 МэВ; согласие наблюдаемых барьеров деления с вычисленными в К. м. я. означает, что член, пропорциональный A2/3 в (1), имеет смысл поверхностной энергии. При x/1 барьер деления исчезает, т. е. у ядра нет устойчивого состояния. Это справедливо при большой энергии возбуждения. В основном же состоянии ядра в образовании барьера деления при х''1 важную роль играют оболочечные поправки. Если капля ядерной жидкости вращается, то её свойства зависят помимо параметра делимости х от безразмерного параметра у, равного отношению энергии вращения сферич. капли к её поверхностной энергии Es. Для x>0,81 при y>y0=7/5(1-x)2 У вращающейся капли нет устойчивого состояния. При y<y0 B минимуме энергии капля имеет форму сплюснутого сфероида, а барьер деления:
012-125.jpg
Для x<0,81 с ростом энергии вращения сплюснутый сфероид сменяется трёхосной фигурой. Изменение симметрии равновесной фигуры вращающегося ядра происходит, когда с увеличением угл. момента сплюснутые двухосные эллипсоиды переходят в трёхосные эллипсоиды Якоби. При ещё больших у трёхосные фигуры теряют устойчивость - у вращающейся капли нет устойчивого равновесия. Существуют помимо (1) другие полуэмпирич. ф-лы капельной модели для Eсв, отличающиеся лишь учётом того или иного числа поправочных членов. Гл. поправка возникает из-за диффузного распределения плотности на границе ядра. Диффузность влияет на энергию симметрии, кулоновскую и поверхностную энергии. Вводятся также поправки, учитывающие сжимаемость ядерной жидкости и др. Величина поправок обычно больше неск. Мэв, а их число n>10. Зависимость этих поправок от А и Z не позволяет надёжно определить соответствующие эмпирич. константы в ф-ле (1). Это возможно потому, что изменения А и Z для известных масс ядер происходят в относительно узкой области долины b-стабильных ядер (рис. 2).

Литература по капельной модели ядра

  1. Кравцов В. А., Массы атомов и энергии связи ядер, 2 изд., М., 1974;
  2. Myers W. D., Development of the semiempirical droplet model, "Atom, data and nucl. data tables", 1976, v. 17, № 5-6, p. 411;
  3. Бор О., Моттельсон Б., Структура атомного ядра, пер. с англ., т. 2, М., 1977.

Г. А. Пик-Пичак

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

Знаете ли Вы, что релятивистское объяснение феномену CMB (космическому микроволновому излучению) придумал человек выдающейся фантазии Иосиф Шкловский (помните книжку миллионного тиража "Вселенная, жизнь, разум"?). Он выдвинул совершенно абсурдную идею, заключавшуюся в том, что это есть "реликтовое" излучение, оставшееся после "Большого Взрыва", то есть от момента "рождения" Вселенной. Хотя из простой логики следует, что Вселенная есть всё, а значит, у нее нет ни начала, ни конца... Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
Bourabai Research - Технологии XXI века Bourabai Research Institution