Квантовый эффект Холла - макроскопич. квантовый эффект, проявляющийся в квантовании холловского сопротивления rху (см. Холла эффект) и исчезновении уд. сопротивления rхх. К. X. э. наблюдается при низких темп-pax Т в инверсионном слое носителей заряда в полупроводниках, помещённых в магн. поле Н, перпендикулярное плоскости ху. В отличие от классич. Холла эффекта, при к-ром rху монотонно зависит от Н или концентрации носителей заряда n (rху=Н/пес, где е - заряд электрона), в случае К. X. э. rху принимает дискретные значения:
rху =(2ph)/(ne2), (1)
а компонента rхх становится исчезающе малой по сравнению со своим значением при H=0:
rхx '' 0. (1')
Здесь 2ph/e2=25812,8 Ом,n=р/q- целые или дробные рациональные числа. Соотношения (1) и (1') выполняются для ряда интервалов концентрации носителей п при пост. Н или для ряда интервалов Н при пост. п
(рис. 1).
К. X. э. с целочисленными n=l, 2, ... (ц. К. X. э.) был
экспериментально открыт в 1980 К. фон Клитцингом (К. von Klitzing) с
сотрудниками [1].
Рис. 1. Зависимости rху(а) и rхx(б) от напряжённости магнитного поля Н; п - концентрация носителей, пH - плотность разрешенных состояний на квантовом уровне.
К. X. э. с дробными n (д. К. X. э.) впервые наблюдали Д. Тсуи (D. Tsui),
X. Л. Штёрмер (Н. L. Stormer) и А. Госсард (A. Gossard) в 1982 при n=p/q=l/3, 2/3, 4/3, 5/3, 7/3, 8/3, 1/5, 2/5, 3/5, 4/5, 6/5, 2/7 [2], а затем 5/2. Ц. К. X. э. был обнаружен на кремниевых МДП-структурах, Д. К. X. э.- на гетеропереходах AlxGa1_xAs-GaAs. К. X. э. наблюдается в двумерных инверсионных слоях п- и р-типа,
в кремниевых МДП-структурах, а также в гетеропереходах на основе GaAs,
InP, InAs, GaSb и др. в достаточно сильных полях и при низких темп-pax Т. При повышении температуры увеличивается сопротивление в минимуме rхх(Н), уменьшается
ширина плато rху(H)и увеличивается его наклон (см. ниже) [3].
Методика измерений. Компоненты rху и rхx тензора сопротивления измеряют на прямоугольных образцах с тремя или более контактами к инверсионному слою (1-4, рис. 2).
Рис. 2. Схематический вид в плане прямоугольного образца и схема измерений rху и rхx.
Контакты сток (С) и исток (И) служат для пропускания тока Ix (направление к-рого принято за ось х). Измерение разности потенциалов между контактами - вдоль тока Vx и поперёк тока Vy- позволяет определить компоненты тензора уд. сопротивления:
Здесь W - ширина двумерного слоя, L - расстояние между контактами вдоль тока. В отличие от классич. эффекта Холла для трёхмерного случая rху не зависит от геом. размеров образца, что существенно для метрологич. применений К. X. э. [4, 5] (см. ниже).
Теория. Осн. особенности ц. К. X. э. удаётся объяснить
на основе одночастичных представлений (не взаимодействующие электроны). В
инверсионном слое совокупность носителей заряда можно рассматривать в
первом приближении как двумерный электронный газ. Носители могут двигаться только в плоскости слоя. При наложении перпендикулярно плоскости слоя магн. поля Н
энергетич. спектр носителей заряда (для определённости электронов) из
непрерывного становится дискретным. При достаточной величине H спектр состоит из отдельных эквидистантных, неперекрывающихся квантовых уровней. Энергия j-го квантового уровня:
Ej=(i +1/2) hwc, j=0,1,2, ... , (3)
где wc=еH/т*с - циклотронная частота электронов, а
r2 = 2(j + 1/2)hс/еH (4)
- радиус их орбиты (Лармора радиус), m* - эффективная масса электрона. Плотность разрешенных состояний на каждом из квантовых уровней nH равна плотности квантов магн. потока Ф, пронизывающего двумерный слой:
где Ф0=hс/2е-квант магнитного потока,
~70 Е - т. н. магнитная длина, т. е. радиус орбиты для наинизшего квантового уровня
j=0. Из (5) видно, что каждому состоянию на квантовом уровне соответствует площадь, равная 2pr20 (рис. 3).
При изменении концентрации носителей п в слое или напряжённости магн. поля Н изменяется положение уровня Ферми EF относительно системы квантовых уровней. Если EF находится в области между двумя соседними квантовыми уровнями (j, j+1), где энергетич. плотность состояний g(E)мала, то при Т
'' О К все состояния на нижележащих j квантовых уровнях полностью
заполнены. Этому условию отвечает концентрация носителей в инверсионном
слое, равная
Рис. 3. Схема заполнения электронами двумерного слоя; показаны "орбиты",
соответствующие основному (j=0) и первому (j=1) квантовым уровням; пунктир
ограничивает участок плоскости, приходящийся на одно состояние
электрона основного уровня; a - максимальное заполнение плоскости электронами, б - частичное.
Подстановка (6) в ф-лу для обычного эффекта Холла даёт соотношение (1). Т. о., срединам плато rху соответствует расположение EF посредине между квантовыми уровнями, а переходный участок между двумя соседними
плато соответствует нахождению EF в области максимума g(E), т. е. в центре квантового уровня (рис. 4).
Изложенная модель идеального двумерного электронного газа электронов, не взаимодействующих друг с другом и с подложкой, объясняет К. X. э. лишь для
дискретных целых значений п. Для того чтобы объяснить широкие плато rхy и минимумы rхx,
в теории вводится предположение о существовании на "крыльях" квантовых уровней
связанных состояний электронов, не способных участвовать в
электропроводности.
Рис. 4. Связь между видом функции плотности состояний g(E)и ступенчатой зависимостью rхy от концентрации электронов п/пH
Возможны разл. механизмы возникновения связанных состояний, напр., вигнеровская кристаллизация (см. Вигнеровский кристалл) или волны зарядовой плотности;
в гетеропереходе туннелирование носителей через потенц. барьер к
донорным примесям по др. сторону перехода и обратно (механизм,
специфический для гетеропереходов); локализация электронов на
флуктуациях потенциала, аналогичная андерсеновской локализации в отсутствие магн. поля. Последний механизм позволяет объяснить большинство эксперим. данных.
Рис. 5. a - потенциальный рельеф квантового уровня,
Г- полуширина уровня; б - плотность состояний g(E); в - разделение площади образца на области
делокализованных (зачернены) и локализованных состояний (горы и впадины рельефа заштрихованы с разным наклоном).
Рис. 5 поясняет возникновение локализованных и делокализованных состояний в последнем случае. На рис. 5, а схематически изображён флуктуирующий в пространстве ху потенц. рельеф E(х, у)квантового уровня, повторяющий в пространстве рельеф дна треугольной потенц. ямы, ограничивающей инверсионный слой (образующейся из-за изгиба энергетич. зон; см. МДП-структура, Гетероструктура, Инверсионный слой). Волновая функция каждого состояния электрона занимает область вблизи эквипотенц. траектории E (x, у)=const, где константа является собств. значением данного состояния (сплошная линия). В тех местах образца, где расположены экстремумы E(х, у), т. е. "горы" и "впадины" потенц. рельефа, эквипотенц. траектории замкнуты (рис. 5, в). Следовательно, электроны, занимающие такие состояния, локализованы: они не могут перемещаться за пределы экстремума при Т '' 0 К. В электропроводности участвуют носители, занимающие лишь те состояния, для к-рых эквипотенц. траектории простираются на длину образца. В двумерном слое бесконечной протяжённости такие траектории занимают бесконечно узкий поясок по энергии вблизи середины квантового уровня. Для образца конечных размеров поясок траекторий расширяется (рис. 5, в) (см. Протекания теория). Статистич. распределение амплитуды флуктуации потенциала в двумерном слое определяет плотность состояний на квантовом уровне g(E)(рис. 5, б). Из сопоставления рис. 5, а и 5, в видно, что локализованные состояния расположены на "крыльях" g(E), в то время как делокализованные состояния - в центре g(E)(зачернённая область на рис. 4, a; 5, в). Существенно, что локализованные и делокализованные состояния разделены не только по энергии, но и в пространстве (рис. 5, в). Рассмотрим качественно поведение rхх при изменении п в двумерном слое. Пусть EF вначале расположена в области локализованных состояний на верх. крыле j-го уровня (рис. 4, a): Ej+Г>EF>Ej. Локализованные носители не участвуют в электропроводности; весь ток протекает только по областям делокализованных состояний. Т. к. эти состояния расположены по энергии ниже EF, то концентрация носителей п в них максимальная (6) и rху имеет квантованное значение (1). При увеличении п добавляемые в двумерный слой новые носители попадают в области локализованных носителей. Концентрация делокализованных носителей при этом не изменяется и, следовательно, не изменяется значение rху. Так будет продолжаться до тех пор, пока EF не выйдет за пределы области локализованных состояний и не попадёт в область делокализованных состояний на i+1 уровень. При этом концентрация носителей в областях, занимаемых делокализованными состояниями, начнёт изменяться соответственно изменению EF; этому соответствует переходный участок между двумя соседними плато rxy (рис. 4, б). Т. о., соотношение (1) выполняется в интервале энергий, равном щели в спектре делокализованных состояний. Локализованные состояния играют при этом роль буфера, разделяющего делокализованные состояния как по энергии, так и в пространстве [3-6]. Д. К. X. э. не удаётся объяснить в рамках одночастичных представлений. Наиб. успешно это явление объясняется теорией Лафлина (R. В. Laughlin [7]). Электроны в двумерном слое вследствие сильного кулоновского взаимодействия образуют несжимаемую квантовую жидкость. Осн. состояния этой жидкости имеют минимум энергии при значениях приведённой концентрации n = 1/(2m+1), где m=1, 2,. . .- целые числа. Минимумы энергии возникают также при n=p/(2m+l), 1bp/(2m+1) и др. (р - целые числа). Возбуждённые состояния отделены от осн. состояний энергетич. щелью ~10-2е2/r0e для n=1/3 и n=2/3, e - диэлектрич. проницаемость вещества. Существование энергетич. щели в спектре возбуждений позволяет объяснить возникновение плато rxy и минимумов rхх в д. К. X. э. аналогично предыдущему. При увеличении р и т (в частности, при n>l или n<1/3) увеличивается энергия осн. состояния взаимодействующих электронов (жидкость) и уменьшается щель, отделяющая осн. состояние от возбуждённых (газ); поэтому д. К. X. э. проявляется всё слабее. Не исключено также, что при n<1/5 в двумерном слое может возникнуть вигнеровская кристаллизация [5-7]. Условия наблюдения К. X. э. 1) Достаточно сильное магн. поле, в к-ром энергетич. расстояния между соседними квантовыми уровнями hwс превосходят собственную ширину Г0 квантовых уровней: hwс>2Г0. 2) Достаточно низкие температуры. Для ц. К. X. э. необходимо, чтобы kT<<hwс, а для д. К. X. э.- много меньше характерной энергии кулоновского взаимодействия: kT<<е2/r0e. 3) Достаточно большое уд. электросопротивление объёма полупроводника по сравнению с сопротивлением двумерного инверсионного слоя, характерный масштаб к-рого 2ph/nе2. 4) Достаточно большая концентрация п носителей заряда в полупроводнике, соответствующая металлич. проводимости инверсионного слоя (п>> 1010 см-2). Для наблюдения К. X. э. необходимы образцы с достаточно высокой подвижностью носителей заряда (т. е. с малой шириной квантовых уровней 2Г), напр., в случае кремниевых МДП-структур, превышающей ~104 см2/(В.с) при T=4,2 К, для ц. К. X. э.; или 3.104 см2/(В.с) - для д. К.Х.э. При kT~10-2e2/r0e (T~3 К) д. К. X. э. исчезает; при kT[hwс ц. К. X. э. переходит в Шубникова - де Хааза эффект (см. Квантовые осцилляции в магнитном поле). При kT/hwс зависимости (1) и (1') соответствуют ф-ле Лоренца: r=Н/пес, как и для классич. эффекта Холла. Практическое применение К. X. э. основано на следующем. 1) Холловские компоненты тензоров удельного и полного сопротивлений в двумерном случае равны и не зависят от размеров образца (2). 2) Отношение h/e2 связано с безразмерной постоянной тонкой структуры a соотношением (в СГС) 2ph/e2 =1/aс, в к-рое входит только с (значение к-рой известно с погрешностью 4.10-9). 3) Квантованное значение сопротивления rxy воспроизводится в эксперименте с погрешностью не хуже 10-7. Т. о., из сравнения rху с сопротивлением эталонной катушки (калиброванной в системе единиц СИ) определяется значение a без привлечения результатов квантовой электродинамики. Такое измерение впервые было осуществлено К. фон Клитцингом с сотрудниками (1980) с погрешностью [2.10-6 и дало согласие с результатами измерений др. методами. Если считать значение a известным, то можно калибровать сопротивление катушки по rху и, т. о., воспроизводить размер Ома, согласованный с размером метра и секунды (через с), т. е. осуществить эталон Ома.
В. М. Пудалов
Когда тот или иной физик использует понятие "физический вакуум", он либо не понимает абсурдности этого термина, либо лукавит, являясь скрытым или явным приверженцем релятивистской идеологии.
Понять абсурдность этого понятия легче всего обратившись к истокам его возникновения. Рождено оно было Полем Дираком в 1930-х, когда стало ясно, что отрицание эфира в чистом виде, как это делал великий математик, но посредственный физик Анри Пуанкаре, уже нельзя. Слишком много фактов противоречит этому.
Для защиты релятивизма Поль Дирак ввел афизическое и алогичное понятие отрицательной энергии, а затем и существование "моря" двух компенсирующих друг друга энергий в вакууме - положительной и отрицательной, а также "моря" компенсирующих друг друга частиц - виртуальных (то есть кажущихся) электронов и позитронов в вакууме.
Однако такая постановка является внутренне противоречивой (виртуальные частицы ненаблюдаемы и их по произволу можно считать в одном случае отсутствующими, а в другом - присутствующими) и противоречащей релятивизму (то есть отрицанию эфира, так как при наличии таких частиц в вакууме релятивизм уже просто невозможен). Подробнее читайте в FAQ по эфирной физике.