к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Радиотелескоп

Радиотелескоп - устройство для приёма радиоизлучения космич. объектов. Состоит из трёх осн. частей: антенны, малошумящего приёмника (радиометра)и анализатора сигналов.

Антенна радиотелескопа собирает падающее на неё радиоизлучение с определ. участка неба, угл. размеры к-рого определяются шириной диаграммы направленности. Эффективность антенны зависит от её эфф. площади и шумовой температуры. Антенна находится в поле излучения Земли, к-рое соответствует шумовой температуре ок. 300 К. Чтобы избежать "засветки" излучением Земли, принимаются спец. меры. Используют т. н. скалярные (коррегированные) облучатели антенн. Такой облучатель представляет собой конич. рупор с ребристой поверхностью. Он обеспечивает максимально возможный приём сигнала со всей геом. поверхности зеркала антенны и минимально возможный вне его. Шумовая темп-pa антенны достигает мин. значений при использовании Кассегреновской (или Грегорианской) системы облучения (аналогичной соответствующим схемам оптических телескопов)в сочетании со скалярным облучателем во вторичном фокусе. В такой системе облучаемое вторичное зеркало находится на фоне неба, что уменьшает "засветку" излучением Земли. Яркостная температура неба в диапазоне сантиметровых и миллиметровых радиоволн составляет всего неск. градусов. Чтобы снизить потери, определяемые поглощением в атмосфере, радиотелескопы миллиметрового диапазона устанавливают высоко в горах.

Приёмник радиотелескопа имеет низкий уровень шумов. Для обеспечения минимальности шумовой температуры системы антенна - приёмник охлаждается не только усилитель, но и облучатель или его входная часть до 15-20 К. Шумовая темп-pa малошумящих транзисторных усилителей ~ 1-20 К и примерно равна частоте, выраженной в ГГц. На волнах миллиметрового диапазона применяются также квантовые усилители и параметрические усилители. После усиления сигнал обычно поступает на смеситель, где смешивается с сигналом гетеродина, и далее на анализатор. Это может быть просто квадратичный детектор, на выходе к-рого сигнал пропорционален измеряемой мощности (температуре), анализатор импульсного излучения пульсаров, спектроанали-затор, система записи на широкополосный магнитофон (в случае наблюдений в режиме радиоинтерферометрии со сверхдлинными базами). Результаты наблюдений обрабатываются на ЭВМ.

Для снижения разл. "паразитных" эффектов при измерении слабых сигналов от космич. объектов применяют ряд методов. Расчётная чувствительность измерений шумового сигнала4024-25.jpgопределяется ра-диометрич. выигрышем, равным4024-26.jpgв случае широких полос пропускания Df~1 ГГц и времени накопления сигналов 4024-27.jpg dT !20мкК (при Тс ! 20 К). Чтобы выделить сигнал такого малого уровня, необходимо компенсировать (вычесть) собств. шумы аппаратуры и фона, напр. при помощи источника пост. тока. Это простейший случай - компенсац. метод. Однако реальная техн. чувствительность определяется стабильностью коэф. усиления аппаратуры, флуктуациями в атмосфере и т. д. Снижение влияния этих факторов достигается методами амплитудной, диаграммной, частотной модуляции; нулевым, корреляционным. В методе амплитудной модуляции непосредственно на входе приёмника происходят быстрое сравнение измеряемой величины (сигнал объекта) с сигналом эталона (эквивалента) и выделения разностного сигнала на выходе приёмника. Если эталонный сигнал близок к измеряемой величине, то изменения уровня собств. шумов аппаратуры практически не влияют на измеряемую величину. Чувствительность этого метода4024-28.jpgПрактически полное исключение влияния изменения коэф. усиления радиометра достигается в нулевом методе - темп-pa эквивалента непрерывно подстраивается системой обратной связи под исследуемую температуру так, чтобы сигнал на выходе равнялся нулю. Измеряемой величиной в этом случае является темп-pa шумов эквивалента. В качестве эквивалента может быть выбрана близлежащая площадка неба, т. е. антенна попеременно наводится то на источник, то на площадку рядом с ним - диаграммная модуляция. При этом практически исключается влияние атмосферы. Диаграммная модуляция может осуществляться путём качания вторичного зеркала в системе Кассегрена, переключением выходов двух облучателей (расположенных в фокальной плоскости зеркальной антенны) либо переключением фазы сигнала в радиоинтерферометре. В случае спектральных исследований переключение может осуществляться по частоте, т. е. сравниваться с шумами вне спектральной линии,- частотная модуляция. В поляризац. и радиоинтерференц. измерениях часто применяют корреляц. приём сигналов - двухканальный приёмник выделяет коррелированную составляющую сигнала. Собств. шумы аппаратуры в таком приёмнике не коррелируют между собой, в то время как принимаемый сигнал от точечного источника будет когерентным, т. е. будет коррелировать на выходе радиометра. Аналогичное явление происходит при приёме поляризов. сигнала источника на два ортогональных облучателя.

Литература по радиотелескопам

  1. Апертурный синтез в радиоастрономии, "Изв. вузов. Радиофизика", 1983, т. 26. №11;
  2. Есепкина H. А., Корольков Д. В., Парийский Ю. H. Радиотелескопы и радиометры, M., 1973;
  3. Матвеенко Л. И. Радиоастрономия, M., 1977 (Астрономия, т. 13).
  4. Rуlе M., Hеwish A., The synthesis of large radio telescopes, "Mon. Notices Roy. Astron. Soc.", 1960, v. 120, p. 220;
  5. Swenson G. W., Mathur N. С., The interferometer in radioastronomy, "Proc. IEEE", 1968, v. 56, № 12, р. 2114.

Л. И. Матвеенко

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

Знаете ли Вы, что в 1965 году два американца Пензиас (эмигрант из Германии) и Вильсон заявили, что они открыли излучение космоса. Через несколько лет им дали Нобелевскую премию, как-будто никто не знал работ Э. Регенера, измерившего температуру космического пространства с помощью запуска болометра в стратосферу в 1933 г.? Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
Bourabai Research - Технологии XXI века Bourabai Research Institution