к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Разрывы магнитогидродинамические

Разрывы магнитогидродинамические - тонкие переходные области, в к-рых происходит резкое изменение (скачок) магнитогидродинамич. (МГД-) параметров (давления, энтропии, плотности, скорости течения, магн. поля) или их производных. Р. м. возникают при столкновении двух потоков, обтекании тел (напр., обтекании планет солнечным ветром), взрывах (вспышках новых и сверхновых звёзд), при сжатии газа поршнем, внезапном включении эл--магн. поля, изменении (исчезновении) начальных или граничных условий и т. д. Р. м. распространяются в идеальном газе (жидкости, плазме) с высокой (строго говоря, бесконечной) электрич. проводимостью в присутствии магн. поля. Если пренебречь эффектами неидеальности вещества (вязкостью, теплопроводностью, джоулевым нагревом), то толщина переходной области равна нулю, т. е. Р. ы. сосредоточены на поверхностях.

Различают слабые и сильные Р. м. Слабым наз. разрыв, на поверхности к-рого имеет место скачок к--л. производных МГД-параметров как функций координат при непрерывности самих параметров. Поверхности, на к-рых возможен слабый Р. м., являются харак-теристич. поверхностями ур-ний идеальной магнитной гидродинамики. Существует 7 типов слабых Р. м.: энтропийный, 2 альвеновских, 2 быстрых и 2 медленных магнитозвуковых. Слабые Р. м. движутся относительно среды со скоростью соответствующих линейных волн.

Р. м. наз. сильным, если на его поверхности имеет место скачок одного или неск. МГД-параметров. Сильный Р. м. может образоваться при пересечении слабых разрывов одного типа. Граничные условия на поверхности сильного Р. м., связывающие значения МГД-параметров по разные стороны разрыва, получаются из законов сохранения массы, импульса и энергии и ур-ний Максвелла в интегральной форме. В системе отсчёта, где сильный Р. м. покоится, они в изотропном случае4025-117.jpg имеют вид:

4025-118.jpg

Здесь r, r и 4025-119.jpg- соответственно давление, плотность и уд. внутр. энергия вещества;4025-120.jpgи 4025-121.jpg - нормальная и тангенциальная (относительно поверхности разрыва) компоненты соответственно скорости вещества и напряжённости магн. поля; скобки {f}обозначают скачок параметра f при переходе через поверхность разрыва, т. е. разность (f2 - f1) значений этого параметра за фронтом разрыва f2 и перед ним f1.

Различают 4 типа сильных Р. м.: тангенциальный, контактный, альвеновский и ударные волны. Для тангенциального разрыва поток вещества через поверхность разрыва отсутствует (uh = 0), а магн. поле параллельно поверхности разрыва (Нп =0). На тангенциальном Р. м. плотность r и тангенциальная скорость uт имеют скачки произвольной величины, а скачки давления p и магн. поля Hт связаны соотношением:

4025-122.jpg

В анизотропном случае, когда4025-123.jpg скачок произвольной величины может иметь продольное давление Р||, а скачки поперечного давления p^ и магн. поля4025-124.jpg связаны соотношением (2).

Тангенциальным разрывом является поверхность раздела двух жидкостей с разл. термодинамич. параметрами, движущимися относительно друг друга с нек-рой скоростью, параллельной границе раздела. Примером тангенциального Р. м. служит магнитопау-за как граница раздела между магнитосферой и солнечным ветром. На тангенциальном разрыве обычно развивается неустойчивость Кельвина - Гельмгольца с инкрементом

4025-125.jpg

Она может быть застабилизирована достаточно сильным магн. полем4025-126.jpg

Контактный разрыв покоится относительно среды (un = 0), однако магн. поле имеет нормальную компоненту (4025-127.jpg0). На поверхности контактного Р. м. непрерывны давление р, магн. поле Н, скорость uт, а плотность r и др. термодинамич. параметры могут испытывать произвольные скачки. В анизотропном случае,4025-128.jpg, давление и тангенциальная компонента магн. поля могут иметь на контактном разрыве скачки, удовлетворяющие соотношениям:

4025-129.jpg

4025-130.jpg

На альвеновском (вращательном) разрыве плотность среды не меняется, {r} = 0, однако имеется поток вещества через поверхность разрыва 4025-131.jpg Альвеновский Р. м. движется относительно этой поверхности впереди и позади неё со скоростью альвеновской волны 4025-132.jpgНа альвеновском разрыве полная напряжённость магн. поля 4025-133.jpg непрерывна, однако сам вектор Н поворачивается вокруг нормали к поверхности разрыва на нек-рый угол. Термодинамич. параметры при переходе через альвеновский разрыв непрерывны, {s} = О, {р} = 0, а скачки тангенциальных компонент скорости и магн. поля связаны ф-лой:

4025-134.jpg

В случае анизотропного давления (4025-135.jpg) на альвеновском (вращательном) разрыве плотность и внутр. энергия, а также магн. поле могут тоже испытывать скачки, к-рые связаны соотношениями:

4025-136.jpg

Разрывы, движущиеся относительно среды4025-137.jpg на к-рых плотность среды испытывает скачок, наз. ударными волнами. На ударных волнах возрастает энтропия,4025-138.jpgа также практически для

всех видов веществ растут давление и плотность:

4025-139.jpg

Ударные волны плоско поляризованы, т. е. векторы H1, Н2 и нормаль к поверхности разрыва лежат в одной плоскости. Скорость ударной волны относительно вещества перед ней зависит от её амплитуды, т. е. от величины скачка к--л. МГД-параметра, напр. {р}. При стремлении амплитуды ударной волны к нулю её скорость стремится к скорости линейных магнитозвуковых волн, быстрой uf или медленной us. Зависимость между значениями термодинамич. параметров перед волной и позади неё наз. ударной адиабатой или адиабатой Гюгоньо. Различают параллельные, перпендикулярные и косые ударные волны.

Эволюционность и устойчивость разрывов магнито-гидродинамических. Р. м., устойчивые относительно распада на неск. разрывов или нестационарных течений, наз. эволюционными. Любое бесконечно малое возмущение эволюц. разрыва приводит (по крайней мере на достаточно малых промежутках времени) к малым изменениям МГД-параметров разрыва. Возмущения эволюц. разрыва могут нарастать во времени по экспоненц. закону (как expgt с положит. инкрементом g), что свидетельствует о неустойчивости такого разрыва, однако в течение времени4025-140.jpgвозмущение останется малым. Введение понятия эволюционности Р. м. связано с возможностью построения нестационарных решений с заданными нач. условиями. Если линеаризованная задача о взаимодействии малых возмущений с разрывом не имеет решения либо имеет не единств. решение, что указывает на неправомерность исходного предположения о малости амплитуд возмущений в течение малого, но конечного времени, то разрыв наз. неэволюционным. Неэволюц. разрыв в течение короткого времени (в модели идеальной магн. гидродинамики - мгновенно) распадается на неск. устойчивых разрывов или может перейти в нестационарное течение. Альвеновские, тангенциальные и контактные Р. м. относятся к классу эволюционных. Для ударных волн условие эволюционности накладывает ограничения на скорость разрыва относительно среды. В частности, скорость быстрой ударной волны относительно среды перед ней должна быть больше скорости быстрой магнитозвуковой волны в среде uf1, а скорость относительно среды за ней - меньше скорости быстрой магнитозвуковой волны uf2.

При падении волн на сильный разрыв коэф. отражения может превысить единицу, т. е. волна усиливается в процессе отражения.

Структура разрывов. При учёте неидеальности вещества (вязкости, теплопроводности, джоулева нагрева) поверхность сильного разрыва размывается в узкий переходный слой, в к-ром МГД-параметры изменяются быстро, но непрерывно. Характер изменения параметров среды в переходной области наз. структурой разрыва. Толщина переходной области для слабой ударной волны часто превышает длину свободного пробега частиц. Это позволяет использовать ур-ния магн. гидродинамики с учётом малых диссипативных факторов для исследования структуры разрыва, к-рая часто описывается монотонной функцией. В разреженной плазме парные кулоновские столкновения могут быть весьма редкими и структура разрыва будет определяться коллективными процессами, а толщина переходной зоны может быть существенно меньше длины свободного пробега (напр., бесстолкновителъные ударные волны).

Литература по магнитогидродинамическим разрывам

  1. Куликовский А. Г., Любимов Г. А., Магнитная гидродинамика, М., 1962;
  2. Plasma Electrodynamics, v. 2, Oxf., 1975;
  3. Баранов В. Б., Краснобаев К. В., Гидродинамическая теория космической плазмы, М., 1977;
  4. Арцимович Л. А., Сагдеев Р. 3., Физика плазмы для физиков, М., 1979;
  5. Половин Р. В., Демуцкий В, П., Основы магнитной гидродинамики, М., 1987.

Н. С. Ерохин, О. Г. Онищенко

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

Знаете ли Вы, что релятивистское объяснение феномену CMB (космическому микроволновому излучению) придумал человек выдающейся фантазии Иосиф Шкловский (помните книжку миллионного тиража "Вселенная, жизнь, разум"?). Он выдвинул совершенно абсурдную идею, заключавшуюся в том, что это есть "реликтовое" излучение, оставшееся после "Большого Взрыва", то есть от момента "рождения" Вселенной. Хотя из простой логики следует, что Вселенная есть всё, а значит, у нее нет ни начала, ни конца... Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
Bourabai Research - Технологии XXI века Bourabai Research Institution