Рентгеновский дифрактометр - прибор для измерения интенсивности и направления рентг. пучков, дифрагированных на исследуемом образце (см. Дифракция рентгеновских лучей ).Р. д. применяется для решения разл. задач рентгеновского структурного анализа, рентгенографии материалов, исследования реальной структуры монокристаллов. Он позволяет измерять интенсивность дифрагированного в заданном направлении излучения с точностью до десятых долей % и угол дифракции с точностью от неск. минут до долей секунды.
Рентгеновский дифрактометр состоит из источника рентг. излучения, рентг. гониометра, в к-рый помещают исследуемый образец, детектора излучения, электронного измерительно-регистрирующего устройства, управляющей ЭВМ. В Р. д. в отличие от камер для регистрации излучения не используют фотоматериалы или люминесцирующие пластины, а применяют сцинтилляционные, пропорциональные, полупроводниковые детекторы (см. Детекторы частиц, Ионизирующее излучение ).В процессе измерения счётчик перемещается в гониометре и регистрирует в каждой точке число фотонов дифрагиров. излучения за определ. интервал времени. Используются также одномерные и двумерные позиционно-чувствит. счётчики указанных выше типов, фиксирующие одновременно и факт попадания фотона в детектор и его пространственные координаты в детекторе. Одномерными и двумерными детекторами можно параллельно измерять дифракц. картину во мн. точках и тем самым ускорять регистрацию одновременно возникающей одномерной или двумерной картины и упростить устройство гониометров. Напр., рентгеновские дифрактометры для поликристаллич. образцов с одномерным детектором или Р. д. для макромолекулярных кристаллов с двумерным детектором позволяют на два порядка сократить время измерения при соответствующем сокращении дозы облучения образца.
Рентгеновские дифрактометры обладают более высокими по сравнению с рентг. фотогр. камерами точностью, чувствительностью, экспрессностью, большим динамич. диапазоном. Процесс получения информации в рентгеновских дифрактометрах может быть полностью автоматизирован, а обработка может производиться очень быстро, поскольку в них отсутствует необходимость проявления фотоплёнки или считывания с пластин фотолюминесценции (рентг. фотогр. камера с регистрацией на пластину с фотостимулированной люминесценцией, оборудованная считывающим устройством, управляемым ЭВМ, по степени автоматизации эквивалентна рентгеновским дифрактометрам). Универсальные рентгеновские дифрактометры для поликристаллич. материалов могут быть использованы для разл. рентгеноструктурных исследований: фазового количеств. и качеств. анализа, текстурных исследований, изучения фазовых превращений, ориентирования монокристаллов, исследований малоуглового рассеяния и т. д., путём замены приставок к гониометрич. устройству. Так, существуют приставки для крупнокристаллич. образцов, исследований текстуры, низкотемпературных (до температур жидкого азота и гелия) и высокотемпературных (до температур ок. 3000 °К) исследований, приставки для ориентирования монокристаллов и т. д. Управляющая ЭВМ и соответствующие программы позволяют автоматически получать дифракц. картину и рассчитывать конечные результаты даже в универсальном рентгеновском дифрактометре. В больших лабораториях применяются более производительные и точные специализиров. Р. д., предназначенные для решения к--л. одной задачи. Источником излучения в Р. д. может быть отпаянная рентг. трубка с точечной или линейной проекцией фокуса с использованием в качестве коллиматоров соответственно круглых или щелевых диафрагм. Для повышения яркости источника и сокращения времени эксперимента на порядок применяют непрерывно откачиваемые рентг. трубки с вращающимся анодом. На два и более порядка можно ускорить дифракц. эксперимент в Р. д., если использовать в качестве рентг. источника синхротронное излучение.
Д. М. Хейкер
Вещество и поле не есть что-то отдельное от эфира, также как и человеческое тело не есть что-то отдельное от атомов и молекул его составляющих. Оно и есть эти атомы и молекулы, собранные в определенном порядке. Также и вещество не есть что-то отдельное от элементарных частиц, а оно состоит из них как базовой материи. Также и элементарные частицы состоят из частиц эфира как базовой материи нижнего уровня. Таким образом, всё, что есть во вселенной - это есть эфир. Эфира 100%. Из него состоят элементарные частицы, а из них всё остальное. Подробнее читайте в FAQ по эфирной физике.