Солнечная батарея (батарея солнечных элементов) - устройство, непосредственно преобразующее энергию солнечного излучения в электрическую. Действие солнечного элемента (СЭ) основано на использовании явления внутр. фотоэффекта .Наиб, применение получили конструкции СЭ с р-п-переходами и гетеропереходами ,представляющие собой плоскую (базовую) полупроводниковую пластину с тонким фронтальным слоем полупроводника, имеющего тип проводимости, противоположный типу проводимости базовой области. При облучении в полупроводнике генерируются дополнит. носители заряда, к-рые перемещаются под действием электрич. поля р - re-перехода и создают на внеш. выводах фотоэдс.
Основные параметры солнечных элементов. При отсутствии внеш. нагрузки напряжение на выводах СЭ максимально и наз. напряжением холостого хода UХХ. В замкнутом накоротко фотоэлементе потечёт макс. фототок Iкз - ток короткого замыкания. При наличии внеш. нагрузки величины напряжения UH на нагрузке и тока IH меньше значений UXX и Iкз соответственно. Величина наз. фактором заполнения нагрузочной характеристики.
Важнейшим параметром СЭ является его кпд (или эффективность преобразования энергии солнечного излучения в электрическую) , где Рс - мощность солнечного излучения, падающего на поверхность СЭ. Эффективность СЭ определяется тем, что часть солнечного излучения с энергией фотона, меньшей ширины запрещённой зоны полупроводника, проходит через СЭ без поглощения и в фотоэлектрич. отношении является бесполезной. Чем меньше ширина запрещённой зоны, тем большая доля солнечного света поглощается в нём.
Др. важная причина снижения кпд СЭ - неполное использование энергии поглощённых фотонов. При генерации электронно-дырочных пар фотонами с энергией, превышающей ширину запрещённой зоны полупроводника, избыточная энергия излучения теряется при переходах внутри зоны за счёт соударений носителей с атомами решётки и переходит в тепло. Эти потери уменьшаются с увеличением
Осн. причинами дополнит. потерь, уменьшающих практически достижимые значения кпд, являются отражение части светового потока от поверхности СЭ (коэф. отражения для полупроводников, применяемых в СЭ, составляет ок. 30% и 3-5% при использовании просветляющих покрытий) и рекомбинац. потери, вызванные тем, что часть возбуждённых фотоносителей не доходят до р - re-перехода, рекомбинирует, а их энергия передаётся решётке полупроводника (см. Рекомбинация носителей заряда). В фотоэлементах с р - п-переходами существенны потери за счёт поверхностной рекомбинации, особенно для носителей, генерированных вблизи облучаемой поверхности КВ-частью солнечного света. Омические потери в СЭ приводят к уменьшению фактора заполнения нагрузочной характеристики.
Энергетич. характеристики С. б. определяются материалом фотоэлемента, конструктивными особенностями СЭ, кол-вом СЭ в батарее. Распространёнными материалами для СЭ являются Si, GaAs, CdS, CdTe (см. Полупроводниковые материалы). Наиб. высокий кпд получен в СЭ на основе Si (17% при освещении в земных условиях) и в СЭ на основе GaAs (22%). Конструктивно С. б. обычно выполняют в виде плоской панели и СЭ, защищённых прозрачными покрытиями. Число СЭ в батарее может достигать неск. сотен тысяч, площадь панели - тысяч м2, ток С. б. - сотен А, напряжение - сотен В, генерируемая мощность - неск. десятков и сотен кВт.
Увеличение кпд может быть получено в каскадных СЭ с неск. р - re-переходами в полупроводниках с разл. шириной запрещённой зоны. Солнечный спектр может быть расщеплён либо селективными зеркалами, либо посредством расположения неск. СЭ один за другим с убыванием ширины запрещённой зоны СЭ по ходу солнечных лучей. Расчётные значения кпд для двухкаскадных СЭ достигают 45%. Осн. перспективы в реализации монолитных конструкций каскадных СЭ заключаются в трудности осуществления последоват. соединения верхнего и нижнего элементов без внесения дополнит. омических и оптич. потерь.
Достоинства С. б.- их простота, надёжность и долговечность, малая масса и миниатюрность СЭ, генерирование энергии без загрязнения окружающей среды; осн. недостаток - высокая стоимость. Применяются на космич. летат. аппаратах, где они занимают доминирующее положение среди др. источников автономного энергопитания. В земных условиях С. б. используют для питания устройств автоматики, переносных радиостанций, разл. приёмников, для катодной антикоррозионной защиты нефте- и газопроводов и др.
В. М. Андреев
1. Электромагнитная волна (в религиозной терминологии релятивизма - "свет") имеет строго постоянную скорость 300 тыс.км/с, абсурдно не отсчитываемую ни от чего. Реально ЭМ-волны имеют разную скорость в веществе (например, ~200 тыс км/с в стекле и ~3 млн. км/с в поверхностных слоях металлов, разную скорость в эфире (см. статью "Температура эфира и красные смещения"), разную скорость для разных частот (см. статью "О скорости ЭМ-волн")
2. В релятивизме "свет" есть мифическое явление само по себе, а не физическая волна, являющаяся волнением определенной физической среды. Релятивистский "свет" - это волнение ничего в ничем. У него нет среды-носителя колебаний.
3. В релятивизме возможны манипуляции со временем (замедление), поэтому там нарушаются основополагающие для любой науки принцип причинности и принцип строгой логичности. В релятивизме при скорости света время останавливается (поэтому в нем абсурдно говорить о частоте фотона). В релятивизме возможны такие насилия над разумом, как утверждение о взаимном превышении возраста близнецов, движущихся с субсветовой скоростью, и прочие издевательства над логикой, присущие любой религии.
4. В гравитационном релятивизме (ОТО) вопреки наблюдаемым фактам утверждается об угловом отклонении ЭМ-волн в пустом пространстве под действием гравитации. Однако астрономам известно, что свет от затменных двойных звезд не подвержен такому отклонению, а те "подтверждающие теорию Эйнштейна факты", которые якобы наблюдались А. Эддингтоном в 1919 году в отношении Солнца, являются фальсификацией. Подробнее читайте в FAQ по эфирной физике.