к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Гиббса распределения

Гиббса распределения - равновесные распределения вероятностей пребывания систем из большого числа частиц в состояниях, реализуемых в разл. физ. условиях. Г. р. - фундам. законы статистической физики - установлены Дж. У. Гиббсом в 1901 и обобщены Дж. фон Нейманом (J. von Neumann) в 1927 для квантовой статистич. механики.

Для получения Г. р. вводится статистический ансамбль Гиббса: совокупность большого (в пределе бесконечно большого) числа копий данной системы (классич. или квантовой), соответствующих заданным макроскопич. условиям. Рассматривается распределение систем (членов ансамбля) в фазовом пространстве координат q и импульсов р частиц или по квантовым состояниям всей системы. Г. р. имеют место как для состояний классич. системы с функцией Гамильтона Н(р,q) в фазовом пространстве (р,q)=(р1,. . ., pN, q1,. . ., qN)всех N частиц системы, так и для квантовых состояний системы с уровнями энергии 1119923-206.jpg. Г. р. в классич. статистике зависят от координат и импульсов лишь через H(р, q)и не зависят от времени, удовлетворяя Лиувилля уравнению, к-рое выражает сохранение плотности вероятности в фазовом пространстве. Г. р. в квантовой статистике зависят от гамильтониана системы 1119923-207.jpg, удовлетворяя квантовому ур-нию Лиувилля, выражающему эволюцию во времени матрицы плотности.

Совокупность энергетически изолированных от окружающей среды систем с энергией 1119923-208.jpg при пост. объёме V с заданным числом частиц N (микроканонич. ансамбль Гиббса) описывается микроканоническим распределением Гиббса f(p, q), согласно к-рому все состояния системы в узкой области энергий (1119923-209.jpg ) вблизи 1119923-210.jpg равновероятны (осн. гипотеза статистич. механики):

1119923-211.jpg

где 1119923-212.jpg -статистический вес макроскопич. состояния системы, т. е. число микроскопич. состояний в энергетич. слое 1119923-213.jpg. Статистич. вес определяется из условия, что полная вероятность пребывания системы в любом из возможных состояний равна единице (условие нормировки вероятности): 1119923-214.jpg , где dГN=dpdq/N!h3N - плотность состояний, а множитель N! учитывает неразличимость частиц. Следовательно,

1119923-215.jpg

где интегрирование ведётся в пределах 1119923-216.jpg1119923-217.jpg . Микроканонич. распределение не чувствительно к выбору величины 1119923-218.jpg и при 1119923-219.jpg переходит в распределение

1119923-220.jpg

где 1119923-221.jpg - дельта-функция Дирака, А - постоянная, определяемая из условий нормировки.

Статистич. вес 1119923-222.jpg определяет энтропию системы S как функцию 1119923-223.jpg

1119923-224.jpg

Совокупность систем в контакте с термостатом, т. е. систем с переменной энергией (фиксировано лишь её ср. значение) при пост. объёме V и заданном числе частиц N (канонич. ансамбль Гиббса), описывается каноническим распределением Гиббса

1119923-225.jpg

где T - абс. темп-pa, F - свободная энергия (Гельмгольца энергия)как функция V, N, T. Свободная энергия F находится из условия нормировки вероятности f(р, q) и определяется через статистич. интеграл Z:

1119923-226.jpg

где

1119923-227.jpg

Распределение вероятностей для систем в термическом и материальном контакте с термостатом и резервуаром частиц, т. е. для систем с переменными энергией НN и числом частиц N (большой канонич. ансамбль Гиббса), описывается большим каноническим распределением Гиббса

1119923-228.jpg

где 1119923-229.jpg - химический потенциал ,1119923-230.jpg- термодинамический потенциал в переменных 1119923-231.jpg. Величина 1119923-232.jpg1119923-233.jpg определяется из условия нормировки вероятности 1119923-234.jpg :

1119923-235.jpg

где

1119923-236.jpg

статистич. интеграл для большого канонич. ансамбля Гиббса.

Совокупность систем в термич. и механич. контакте с окружающей средой, т. е. с переменными энергией и объёмом, когда постоянным поддерживается давление P с помощью, напр., подвижного поршня (изобарически - изотермич. ансамбль Гиббса), описывается изобарно-изотермич. Г. р.

1119923-237.jpg

где Ф - Гиббса энергия, т. е. термодинамич. потенциал в переменных V, P, T.

Г. р. в классич. статистич. механике являются предельными случаями Г. р. квантовой статистич. механики при таких плотностях и темп-pax, когда можно пренебречь квантовыми эффектами. Для квантовых систем Г. р. имеют такую же форму, как и для классических, но в них вместо Н(р, q)входит энергия i-гo квантового уровня системы 1119923-238.jpg. Для ансамбля замкнутых, энергетически изолированных систем с пост. объёмом V и полным числом частиц N, имеющих одинаковую энергию 1119923-239.jpg с точностью до 1119923-240.jpg , все квантово-механич. состояния в слое 1119923-241.jpg предполагаются равновероятными (осн. постулат квантовой статистич. механики). Такой микроканонич. ансамбль описывается микроканонич. распределением квантовой статистики. Вероятность пребывания системы в i-м состоянии равна

1119923-242.jpg

Здесь 1119923-243.jpg - статистич. вес макроскопич. состояния, т. е. число квантовых уровней в слое 1119923-244.jpg. Как и в классич. статистич. механике, он определяет энтропию системы1119923-245.jpg.

Статистич. ансамбль квантовомеханич. систем с заданным числом частиц N при пост. объёме V в контакте с термостатом (канонич. ансамбль Гиббса квантовой статистики) описывается канонич. распределением Гиббса. Вероятность нахождения системы в i-м квантовом состоянии равна

1119923-246.jpg

где статистич. сумма Z(V, N, T)определяется из условия, что полная вероятность пребывания системы в любом из квантовых состояний равна единице1119923-247.jpg1 - условие нормировки вероятности в квантовой статистике). Следовательно,

1119923-248.jpg

где суммирование ведётся по всем квантовомеханич. состояниям, разрешённым принципом симметрии или антисимметрии. Статистич. сумма определяет свободную энергию системы 1119923-249.jpg . Статистич. ансамбль квантовомеханич. систем с заданным объёмом, находящихся в контакте с термостатом и резервуаром частиц (большой канонич. ансамбль квантовой статистики), описывается большим канонич. Г. р.

1119923-250.jpg

где

1119923-251.jpg

Статистич. сумма1119923-252.jpg большого канонич. ансамбля квантовой статистики определяет термодинамич. потенциал 1119923-253.jpg в переменных 1119923-254.jpg:1119923-255.jpg1119923-256.jpg . Все Г. р. соответствуют максимуму информац. энтропии (см. Энтропия)при разл. дополнит. условиях: микроканонич. Г. р.- при пост. числе частиц и энергии; канонич. Г. р.- при пост. числе частиц и заданной ср. энергии; большое канонич. Г. р.- при заданных ср. энергии и ср. числе частиц. T. о., все Г. р. являются наиб. вероятными распределениями, но при разл. условиях.

Для вычисления термодинамич. потенциалов все Г. р. эквивалентны, т. е. если с помощью одного из Г. р. вычислить соответствующий ему термодинамич. потенциал, то затем при помощи термодинамич. соотношений можно найти и все др. термодинамич. потенциалы, соответствующие др. ансамблям.

Литература по распределению Гиббса

  1. Mайер Дж., Гепперт-Майер M., Статистическая механика, пер. с англ., 2 изд., M., 1980, гл. 3, 4;
  2. Xилл Т., Статистическая механика, пер. с англ., M., 1960, гл. 1-3;
  3. Xуанг К., Статистическая механика, пер. с англ., M., 1966, гл. 7-9;
  4. Зубарев Д. H., Неравновесная статистическая термодинамика, M., 1971, p 3, 9;
  5. Исихара А., Статистическая физика, пер. с англ., M., 1973, гл. 2, 3;
  6. Балеску Р., Равновесная и неравновесная статистическая механика, пер. с англ., т. 1, M., 1978, гл. 4;
  7. Гиббс Дж., Термодинамика. Статистическая механика, пер. с англ., M., 1982.

Д.H. Зубарев.

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

Знаете ли Вы, в чем ложность понятия "физический вакуум"?

Физический вакуум - понятие релятивистской квантовой физики, под ним там понимают низшее (основное) энергетическое состояние квантованного поля, обладающее нулевыми импульсом, моментом импульса и другими квантовыми числами. Физическим вакуумом релятивистские теоретики называют полностью лишённое вещества пространство, заполненное неизмеряемым, а значит, лишь воображаемым полем. Такое состояние по мнению релятивистов не является абсолютной пустотой, но пространством, заполненным некими фантомными (виртуальными) частицами. Релятивистская квантовая теория поля утверждает, что, в согласии с принципом неопределённости Гейзенберга, в физическом вакууме постоянно рождаются и исчезают виртуальные, то есть кажущиеся (кому кажущиеся?), частицы: происходят так называемые нулевые колебания полей. Виртуальные частицы физического вакуума, а следовательно, он сам, по определению не имеют системы отсчета, так как в противном случае нарушался бы принцип относительности Эйнштейна, на котором основывается теория относительности (то есть стала бы возможной абсолютная система измерения с отсчетом от частиц физического вакуума, что в свою очередь однозначно опровергло бы принцип относительности, на котором постороена СТО). Таким образом, физический вакуум и его частицы не есть элементы физического мира, но лишь элементы теории относительности, которые существуют не в реальном мире, но лишь в релятивистских формулах, нарушая при этом принцип причинности (возникают и исчезают беспричинно), принцип объективности (виртуальные частицы можно считать в зависимсоти от желания теоретика либо существующими, либо не существующими), принцип фактической измеримости (не наблюдаемы, не имеют своей ИСО).

Когда тот или иной физик использует понятие "физический вакуум", он либо не понимает абсурдности этого термина, либо лукавит, являясь скрытым или явным приверженцем релятивистской идеологии.

Понять абсурдность этого понятия легче всего обратившись к истокам его возникновения. Рождено оно было Полем Дираком в 1930-х, когда стало ясно, что отрицание эфира в чистом виде, как это делал великий математик, но посредственный физик Анри Пуанкаре, уже нельзя. Слишком много фактов противоречит этому.

Для защиты релятивизма Поль Дирак ввел афизическое и алогичное понятие отрицательной энергии, а затем и существование "моря" двух компенсирующих друг друга энергий в вакууме - положительной и отрицательной, а также "моря" компенсирующих друг друга частиц - виртуальных (то есть кажущихся) электронов и позитронов в вакууме.

Однако такая постановка является внутренне противоречивой (виртуальные частицы ненаблюдаемы и их по произволу можно считать в одном случае отсутствующими, а в другом - присутствующими) и противоречащей релятивизму (то есть отрицанию эфира, так как при наличии таких частиц в вакууме релятивизм уже просто невозможен). Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
Bourabai Research - Технологии XXI века Bourabai Research Institution