Катодолюминесценция - люминесценция ,возникающая при возбуждении вещества потоками электронов, ускоренных во внеш. электрич. поле. К. обнаружена в сер. 19 в. до открытия электрона; пучок электронов, вызывающий свечение стеклянных стенок вакуумированных трубок, называли катодными лучами, и поэтому само свечение было назв. К. Как физ. явление К. впервые начал изучать У. Крукс (W. Crookes) в 70-х гг. 19 в. К., как и др. виды люминесценции, обладает инерционностью послесвечения, температурным и др. видами тушения, характерным для данного вещества спектром свечения и т. д. Вместе с тем она обладает специфич. свойствами, связанными с особенностями преобразования кинетич. энергии заряж. частицы в кванты излучения значительно меньшей энергии: многоэтапный процесс преобразования, наличие дополнительных каналов потерь энергии, часто наблюдающаяся нелинейная зависимость яркости свечения от напряжения и плотности тока, трековый характер возбуждения и т. д. Способностью к К. в видимой, ИК- или УФ-областях спектра в той или иной степени обладают мн. природные или специально синтезированные вещества - чистые и легированные разл. примесями полупроводники и диэлектрики, стёкла, молекулярные кристаллы, растворы и даже инертные газы в твёрдом состоянии. Наиб. эффективность преобразования энергии, достигающую 20-25%, имеют нек-рые поликристаллич. кристаллофосфоры с рекомбинац. механизмом свечения (катодолюминофоры). При К. преобразование энергии электронов проходит неск. последовательных стадий. Возбуждающий электрон за время ~10-14 с производит первичную ионизацию атомов (или ионов) осн. вещества, дающую начало каскадной ионизации вторичными и т. д. электронами вещества с достаточно высокой кинетич. энергией. Процесс размножения элементарных возбуждений заканчивается за время ~10-12 с, когда кинетич. энергия электронов (в зоне проводимости) и дырок (в валентной зоне) становится меньше пороговой энергии (обычно превышающей ширину запрещённой зоны ~в 1,5 раза), необходимой для создания ещё одной электронно-дырочной пары. Ионизация центров свечения и последующая излучат. рекомбинация носителей заряда на этих центрах происходит уже после термализации таких носителей (~10-11-10-10 с), т. е. когда их кинетич. энергия уменьшается до энергии тепловых колебаний решётки. Вследствие тепловых потерь эффективность К. не может превышать 30-40%. Дополнит. потери энергии возникают из-за отражения первичных электронов поверхностью вещества, приобретения ею отрицат. заряда, а также безызлучат. рекомбинации на разл. дефектах решётки, концентрация к-рых особенно велика в поверхностном, т. н. мёртвом, слое кристалла толщиной ~0,1 мкм. Заряд отводится в основном путём вторичной электронной эмиссии; с той же целью (а также для концентрации свечения по одну сторону от экрана) поверхность экрана покрывают тонкой плёнкой металла, например алюминия. Обычно для К. используют ускоряющие напряжения V~10-50 кВ, при к-рых глубина проникновения электронов составляет неск. единиц или десятков мкм. При V>50 кВ сильно возрастает интенсивность рентг. излучения и ускоряется образование радиац. дефектов в поверхностном слое кристаллов. Интенсивность К. пропорц. Va, где 1<a<2, и при V<1 кВ свечение практически полностью отсутствует. Однако с помощью обработки поверхности кристалликов, повышения их электропроводности и улучшения вакуума удаётся получить низковольтную К. уже при V~10 эВ, эффективность к-рой ~0,1%; она используется в буквенно-цифровых индикаторах. При увеличении плотности тока, необходимом для повышения яркости свечения, обычно наблюдается насыщение К., т. е. уменьшение эффективности свечения, к-рое обусловлено рядом причин: зарядка и нагрев образца, ионизация значит, доли центров свечения, высвечивание локализованных носителей и их тройная безызлучат. рекомбинация. Вместе с тем при импульсном возбуждении нек-рых особо чистых кристаллов и сублимированных плёнок яркость узких полос испускания, расположенных вблизи края фундам. поглощения, возрастает быстрее плотности тока. При превышении пороговых плотностей тока (до значений /10 А/см2) на соответствующих (обычно экситонных) переходах может наблюдаться и лазерное излучение, к-рое, однако, уже не является К. Катодолюминофоры обычно исследуют и используют в виде катодолюминесцентных экранов, т. е. тонких слоев (~5-20 мкм), осаждённых на металлич. или стеклянные подложки. Катодолюминесцентные экраны широко применяют для визуализации потоков электронов и создаваемых ими изображений во мн. совр. электронно-лучевых приборах разл. назначения. Для этих целей промышленность выпускает катодолюминофоры с разл. цветом и инерционностью свечения. Так, в качестве компонентов экранов чёрно-белого и цветного телевидения обычно используют цинк-кадмийсульфидные кристаллофосфоры, активизированные ионами серебра и меди. Изменяя состав основания кристалло-фосфоров и условия их синтеза, можно перекрыть весь видимый диапазон спектра с длительностью послесвечения (зависящей от плотности возбуждения) ~10-2-10-3 с, т. е. короче инерционности зрительного восприятия. Для тех же целей начинают применять др. основы (например, оксисульфиды), активированные редкоземельными ионами, к-рые уступают по эффективности, но, обладая более узкими полосами свечения, обеспечивают лучшую цветопередачу. Разработаны и катодолюминофоры с весьма длит, (секунды и даже минуты) и, наоборот, предельно коротким (до 10-7-10-8 с) послесвечением.
Ю. П. Тимофеев
Когда тот или иной физик использует понятие "физический вакуум", он либо не понимает абсурдности этого термина, либо лукавит, являясь скрытым или явным приверженцем релятивистской идеологии.
Понять абсурдность этого понятия легче всего обратившись к истокам его возникновения. Рождено оно было Полем Дираком в 1930-х, когда стало ясно, что отрицание эфира в чистом виде, как это делал великий математик, но посредственный физик Анри Пуанкаре, уже нельзя. Слишком много фактов противоречит этому.
Для защиты релятивизма Поль Дирак ввел афизическое и алогичное понятие отрицательной энергии, а затем и существование "моря" двух компенсирующих друг друга энергий в вакууме - положительной и отрицательной, а также "моря" компенсирующих друг друга частиц - виртуальных (то есть кажущихся) электронов и позитронов в вакууме.
Однако такая постановка является внутренне противоречивой (виртуальные частицы ненаблюдаемы и их по произволу можно считать в одном случае отсутствующими, а в другом - присутствующими) и противоречащей релятивизму (то есть отрицанию эфира, так как при наличии таких частиц в вакууме релятивизм уже просто невозможен). Подробнее читайте в FAQ по эфирной физике.
|
![]() |