Нейтронные источники - устройства для получения нейтронных пучков. Действие всех типов источников основано на использовании
ядерных реакций, сопровождающихся вылетом нейтронов. H. и. характеризуются интенсивностью
(число нейтронов в 1 с), энергетических и угловых распределениями, степенью
поляризации нейтронов (см. Поляризованные нейтроны)и режимом испускания
(непрерывным или импульсным).
Простейшие H. и. (радиоизотопные) содержат либо
спонтанно делящиеся ядра (напр., 252Cf), либо однородную смесь порошков
Be и a-активного нуклида (250Po, 226Ra, 239
Pu, 241 Am), излучающую нейтроны в результате реакции 9Be
+ 4He = 12C + n. Макс. мощность таких H. и. (~ 108
нейтрон/с) ограничена допустимой активностью радиоакт. препаратов. Достоинства
радиоизотопных H. и. - малые габариты, портативность и стабильность (хотя мощность
источника плавно падает в соответствии с периодом полураспада радиоакт. нуклида).
Их недостатки, кроме низкой мощности,- широкий энергетич. спектр нейтронов (0,1
- 12 МэВ) и высокий уровень сопровождающего g
- излучения.
Более мощные H. и., испускающие 10 7
- 1013 с-1,- небольшие эл--статич. ускорители, в к-рых
ядра дейтерия 2H, ускоренные до энергии ~ 200 кэВ, бомбардируют мишень,
содержащую тритий 3H. В результате реакции 2H + 3H
= 4He + n образуются практически моноэвергетич. нейтроны с энергией
~ 14 МэВ. Такие H. и. используются для нейтронного актива-ционного анализа, нейтронного каротажа, нейтронографии,
Еще более мощными H. и. являются исследовательские
ядерные реакторы, испускающие 5·1016 c-1Ha каждый
МВт мощности реактора. Реактор как H. и. обычно характеризуется не полным кол-вом
испускаемых нейтронов, а макс. плотностьюN их потока (яркость) внутри
активной зоны или замедлителя реактора. В исследовательских реакторах N достигает
1015 с-1 с 1 см2. Хотя в реакции деления
ядер ср. энергия образующихся нейтронов ~ 2 МэВ, в результате замедления
нейтронов в конструкц. элементах и замедлителе спектр нейтронов обычно сильно
обогащён тепловыми нейтронами (максимум в области 0,06 эВ). Ещё большая яркость
~ 1017 с-1 с 1 см2 (в импульсе длительностью
100 мкс) достигается в импульсных реакторах.
Высокая плотность потока нейтронов получается
также при использовании мощных электронных или протонных ускорителей (см. Нейтронный
генератор).
Знаете ли Вы, что cогласно релятивистской мифологии "гравитационное линзирование - это физическое явление, связанное с отклонением лучей света в поле тяжести. Гравитационные линзы обясняют образование кратных изображений одного и того же астрономического объекта (квазаров, галактик), когда на луч зрения от источника к наблюдателю попадает другая галактика или скопление галактик (собственно линза). В некоторых изображениях происходит усиление яркости оригинального источника." (Релятивисты приводят примеры искажения изображений галактик в качестве подтверждения ОТО - воздействия гравитации на свет) При этом они забывают, что поле действия эффекта ОТО - это малые углы вблизи поверхности звезд, где на самом деле этот эффект не наблюдается (затменные двойные). Разница в шкалах явлений реального искажения изображений галактик и мифического отклонения вблизи звезд - 1011 раз. Приведу аналогию. Можно говорить о воздействии поверхностного натяжения на форму капель, но нельзя серьезно говорить о силе поверхностного натяжения, как о причине океанских приливов. Эфирная физика находит ответ на наблюдаемое явление искажения изображений галактик. Это результат нагрева эфира вблизи галактик, изменения его плотности и, следовательно, изменения скорости света на галактических расстояниях вследствие преломления света в эфире различной плотности. Подтверждением термической природы искажения изображений галактик является прямая связь этого искажения с радиоизлучением пространства, то есть эфира в этом месте, смещение спектра CMB (космическое микроволновое излучение) в данном направлении в высокочастотную область. Подробнее читайте в FAQ по эфирной физике.