Сверхпроводники - вещества, у к-рых при охлаждении ниже
определённой критич. температуры Тс электрич. сопротивление
падает до нуля, т. е. наблюдается сверхпроводимость .За исключением
благородных (Си, Ag, Au, Pt), щелочных (Li, Na, К и др.), щёлочноземельных
(Be, Mg и др.) и ферромагнитных (Fe, Co, Ni) металлов, б. ч. остальных
металлич. элементов является С. (см. табл. в ст. Металлы ).Элементы
Si, Ge, Bi, Те становятся С. при охлаждении под давлением. Переход в сверхпроводящее
состояние обнаружен у неск. сотен металлич. сплавов и соединений и у нек-рых
сильнолегированных полупроводников. Ряд сверхпроводящих сплавов
состоит из компонент, не являющихся С. Открыты органические сверхпроводники и полимеры, напр. (SN)X, Тс = 0,34 К.
По величине Тсв силу историч. причин С. делятся на классические,
у к-рых Тс< 30 К, и высокотемпературные С. (ВТСП)
с характерными значениями
Тс ~ 100 К (см. Оксидные
высокотемпературные сверхпроводники).
Наряду с потерей сопротивления важнейшим свойством С. является вытеснение магн. поля из массивного образца (Мейснера эффект ).В силу этого все С. являются диамагнетиками .Слабое магн. поле проникает лишь в тонкий поверхностный слой и менее. По своему поведению в магн. поле С. делятся на две группы: С. 1-го и 2-го рода. В С. 1-го рода проникновение магн. поля в глубь образца и восстановление сопротивления происходят в определённом критич. поле Нс. ПриС. 1-го рода переходит в нормальное - несверхпроводящее состояние. В С. 2-го рода проникновение магн. поля (в виде вихревых нитей, т. е. вихрей сверхпроводящего тока, каждый из к-рых несёт квант магнитного потока)начинается в ниж. критич. поле НС1 и заканчивается в верхнем НС2. Электрич. сопротивление восстанавливается в осн. вблизи НС2. При вещество становится полностью нормальным (см. также Критическое магнитное поле, Сверхпроводники первого рода. Сверхпроводники второго рода, Решётка вихрей Абрикосова).
С ростом температуры значения всех критич. магн. полей монотонно падают и обращаются в нуль при Т = Тс. Макс. значения Нс = Н0 (или НС2 = Н0), определённые из эксперим. данных путём экстраполяции к Т = 0, для нек-рых С. приведены в табл.
Предельная величина постоянного электрич. тока, протекающего в С. без диссипации энергии, наз. критическим током IС. В массивном С. 1-го рода величина IС определяется током, создающим на поверхности С. поля НС. В С. 2-го рода значение IС определяется образованием и движением вихревых токов.
Все чистые металлы, за исключением V и Nb, и нек-рые сплавы с низким содержанием одного компонента являются С. 1-го рода. Группа С. 2-го рода гораздо многочисленнее. Сюда относятся классические С. с высокими значениями Тс и ВТСП.
Среди С. 2-го рода выделяют группу т. н. жёстких С. Для них характерно большое кол-во дефектов структуры (неоднородности состава, вакансии, дислокации и др.), к-рые возникают благодаря спец. технологии изготовления. В жёстких С. движение магн. потока сильно затруднено дефектами и кривые намагничивания обнаруживают сильный гистерезис .В этих материалах сильные сверхпроводящие токи (плотностью до 105 - 106 А/см2) могут протекать вплоть до полей, близких к верхнему критич. полю НС2 при любой ориентации тока и магн. поля. В идеальном С. 2-го рода, полностью лишённом дефектов (к этому состоянию можно приблизиться в результате длительного отжига сплава), при любой ориентации поля и тока, за исключением продольной, сколь угодно малый ток будет сопровождаться потерями на движение магн. потока уже при Н > НС1. Такие С. 2-го рода наз. мягкими. Значение НС1 обычно во много раз меньше НС2. Поэтому именно жёсткие С., у к-рых электрич. сопротивление практически равно нулю вплоть до очень сильных полей, представляют интерес с точки зрения техн. приложений. Их применяют для изготовления обмоток сверхпроводящих магнитов и др. целей. Существ. недостатком жёстких С. является их хрупкость, сильно затрудняющая изготовление из них проволок или лент. Особенно это относится к классич. соединениям с самыми высокими значениями ТС и НС типа V3Ga, Nb3Sn, PbMo6S8. Изготовление сверхпроводящих магн. систем из этих материалов - сложная технол. задача.
Огромные значения критич. полей Н0 для ВТСП, определённые путём экстраполяции результатов измерений при высоких темп-pax, открывают принципиально новые перспективы использования этих материалов, однако техн. проблемы, связанные с их применением, ещё не решены.
И. П. Крылов.