к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Сегнетоэластики (ферроэластики)

Сегнетоэластики (ферроэластики) - кристаллические вещества, в которых при понижении температуры возникает спонтанная деформация кристаллической решётки относительно исходной в отсутствие внеш. механич. напряжений. Термин "сегнетоэластики" ввёл К. Айдзу (К. Aizu) в 1969. Спонтанная деформация является результатом структурного фазового перехода из более симметричной (параэластич.) в менее симметричную (сегнетоэластич.) фазу. Напр., кубич. сингония переходит в тетрагональную, гексагональная или тетрагональная - в ромбическую или моноклинную, ромбическая - в моноклинную (см. Сингония).

При сегнетоэластич. переходе кристалл без разрыва своей сплошности теряет ориентац. однородность и разбивается на сегнетоэластич. домены, каждый из к-рых принадлежит к одному из нескольких (двух, трёх - в зависимости от изменения симметрии) состояний, отличающихся ориентацией кристаллич. решётки (рис. 1, 2). Возникновение сегнетоэластич. (ориентац.) доменов можно рассматривать как частный случай механич. двойникования, причём элементами двойникования служат утраченные при переходе элементы поворотной (точечной) симметрии (см. Симметрия кристаллов ).В прозрачных С. доменную структуру можно наблюдать с помощью оптич. поляризац. микроскопа благодаря разориентации оптич. индикатрис или разл. двойному лучепреломлению доменов. Наличие ориентац. доменов - характерный признак сегнетоэластич. фазы.

Домены могут «переключаться» из одного ориентац. состояния в другое под действием механич. напряжений определённой величины и направления. Процесс переключения может происходить, напр., путём рождения тонких клиновидных или линзообразных доменов с последующим их ростом и движением регулярных плоских или зигзагообразных доменных границ или путём перемещения одной доменной границы.
8028-1.jpg

Рис. 1. Искажение кубической ячейки при сегнетоэла-стическом переходе в тетрагональную сингонию (три ориентационных состояния).

В отличие от линейно упругих материалов или от веществ со слабой упругой нелинейностью, зависимость макроскопич. деформации С. от приложенного механич. напряжения линейна лишь значительно выше
8028-2.jpg

Рис. 2. Искажение ромбической ячейки при переходе в моноклинную сингонию (два ориентационных состояния).

температуры перехода Тк и приобретает существенно нелинейный характер в параэластич. фазе вблизи Тк, переходя в петлю гистерезиса (см. Гистерезис упругий)в сегнетоэластич. фазе (рис. 3). По петле гистерезиса можно определить величину спонтанной деформации х (для С. характерны большие величины х ~10-3-10-1) и т.н. коэрцитивного напряжения Хк, при к-ром происходит переключение доменов. Значения Хк варьируются в пределах от 105-10s Па для «эласто-мягких» С. до 108 Па для «эластожёстких». С. являются упругими аналогами сегнетоэлектриков и ферромагнетиков (см. Ферроики).
8028-3.jpg

Рис. 3. Зависимость деформации х от напряжения X ри Т > Тк (1); вблизи Тк (2) и при Т < Тк (3).

Анализ сегнетоэластич. фазовых переходов и аномалий упругих свойств С. базируется на феноменологич. теории фазовых переходов. Исходным пунктом его является построение термодинамич. потенциала Ф, зависящего от параметра порядка8028-4.jpg, являющегося внутренней микроскопич. переменной, характеризующей изменение пространственной симметрии кристалла (точечной и трансляционной) при фазовом переходе.

Параметр порядка8028-5.jpg при Т > Тк и8028-6.jpg при Т < Тк. Вблизи Тк параметр ц мал и термодинамич. потенциал может быть разложен по степеням8028-7.jpg
8028-8.jpg

Здесь Ф0 - не зависящий от8028-9.jpg потенциал в исходной фазе, r - параметр, зависящий от температуры Т. Равновесное значение параметра порядка определяется из условия8028-10.jpg и8028-11.jpg. Потенциал Ф содержит также члены, характеризующие связь8028-12.jpg и х (в общем случае8028-13.jpg и х - многокомпонентные величины). Характер связи зависит от изменения симметрии - не только точечной, но и трансляционной. Если параметр порядка8028-14.jpg и спонтанная деформация х преобразуются операциями симметрии одинаково, то С. наз. собственным. При собств. сегнетоэластич. переходе изменяется только точечная симметрия кристалла, но не меняется трансляционная. При несобств. сегнетоэластич. переходе меняется также и трансляц. симметрия, а объём элементарной ячейки увеличивается (умножается). При этом помимо ориентационных возникают также трансляционные (антифазные) домены.

Термодинамич. анализ потенциала Ф позволяет описать аномалии разл. свойств в окрестности температуры Тк - скачок теплоёмкости Ср, температурные зависимости деформации х (коэф. теплового расширения8028-15.jpg), поляризации Р (если сегнетоэластич. фаза обладает сегнетоэлектрич. свойствами), упругих местностей с или податливостей s, диэлектрич. проницаемостей е и т. д. При этом вид аномалий для собственных и несобственных С. различен (рис. 4). При фазовом переходе 2-го рода в собств. С. при Т < Тк сдвиговая спонтанная деформация изменяется с Г по закону8028-17.jpg , а в несобственном - как8028-18.jpg. Соответствующая компонента жёсткости в собств. С. ведёт себя как (Т - Тк)выше и ниже Тк, т. е. при8028-19.jpg в обеих фазах наблюдается уменьшение жёсткости с и падение скорости звука. В несобств. С. этого не происходит и при Тк наблюдается скачок и(или) изменение температурного коэф. жёсткости.
8028-16.jpg

Рис. 4. Температурные зависимости теплоёмкости Ср, спонтанной деформации х и упругой жёсткости с при собственном (а, б, в) и несобственном (г, д, е) сегнетоэластических переходах.

В отличие от феноменелогич. теории, микроскопич. теория конкретизирует механизм фазового перехода и рассматривает взаимодействие частиц, составляющих кристаллич. решётку, с учётом её трансляц. симметрии. Как и в случае сегнетоэлектриков, различают С. типа смещения и типа порядок - беспорядок.

С.- многочисл. класс кристаллов, претерпевающих структурные фазовые переходы. Кристаллохим. классификация С. группирует их по типу пространственной укладки «эластоактивных» высокосимметричных (октаэдрических или тетраэдрических) анионных или катионных комплексов, повороты или деформация к-рых могут приводить к понижению симметрии кристалла. Структурная классификация С. обычно указывает структурный тип «родоначальника» семейства изоморфных кристаллов (интернациональное назв. минерала). Семейства С. образуют пальмиериты [Рb3(РО4)2], фергюсониты (BiVO4), тейлориты (К2СrО4), тридимиты (CsLiSО4), лангбейниты (K2Cd2SO4), двойные тригональные молибдаты и вольфраматы [KFe(MoO4)2], редкоземельные пентафосфаты (LaP5О14), фресноиты (Ba2TiGe2О8), дителлуриты (SrTe2О5), семейство K4Zn(MoO4)3, С. с водородными связями Н3ВО3, KH3(SeO3)2, перовскиты (KMnF3) и эльпасолиты (Cs2NaNdCl6), каломель (Hg2Cl2).

Свойства С., и особенно С--сегнетоэлектриков, обусловливают их применение. Напр., на основе редкоземельных молибдатов, в частности молибдата гадолиния, разработаны акустоэлектронные устройства, в к-рых используется взаимодействие распространяющейся акустич. волны с одиночной доменной стенкой или с регулярной полидомённой структурой. Они управляются электрич. полем или механич. напряжением. С. обладают высокой акустооптич. эффективностью (см. Акустооптика ).Сегнетоэластич. фазовые переходы испытывают многие кристаллы - высокотемпературные сверхпроводники, а также ионные суперпроводники.

Литература по сегнетоэластам (ферроэластикам)

  1. Aizu К., Possible species of «ferroelastic» crystals and of simultaneously ferroelectric and ferroelastic crystals, «J. Phys. Soc. Japan», 1969, v. 27, p. 387;
  2. Janоveс V., Dvоfuk V., Petzelt J., Symmetry classification and properties of equi-translation structural phase transitions, «Czech. J. Phys.», 1975, v. B25, p. 1362;
  3. Фазовые переходы в кристаллах галоидных соединений АВХ3. Кристаллохимия, структурные и магнитные превращения, Новосиб., 1981;
  4. Изюмов Ю. А., Сыромятников В. Н., Фазовые переходы и симметрия кристаллов, М., 1984;
  5. Материалы I - IV Всесоюзных семинаров по физике сегнетоэластиков, «Изв. АН СССР. Сер. физ.», 1979, т. 43, № 8, с. 1553; 1983, т. 47, № 3, с. 417; 1986, т. 50, № 2, с. 310; 1989, т. 53, № 7, с. 1233.

Н. Р. Иванов

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

Знаете ли Вы, почему "черные дыры" - фикция?
Согласно релятивистской мифологии, "чёрная дыра - это область в пространстве-времени, гравитационное притяжение которой настолько велико, что покинуть её не могут даже объекты, движущиеся со скоростью света (в том числе и кванты самого света). Граница этой области называется горизонтом событий, а её характерный размер - гравитационным радиусом. В простейшем случае сферически симметричной чёрной дыры он равен радиусу Шварцшильда".
На самом деле миф о черных дырах есть порождение мифа о фотоне - пушечном ядре. Этот миф родился еще в античные времена. Математическое развитие он получил в трудах Исаака Ньютона в виде корпускулярной теории света. Корпускуле света приписывалась масса. Из этого следовало, что при высоких ускорениях свободного падения возможен поворот траектории луча света вспять, по параболе, как это происходит с пушечным ядром в гравитационном поле Земли.
Отсюда родились сказки о "радиусе Шварцшильда", "черных дырах Хокинга" и прочих безудержных фантазиях пропагандистов релятивизма.
Впрочем, эти сказки несколько древнее. В 1795 году математик Пьер Симон Лаплас писал:
"Если бы диаметр светящейся звезды с той же плотностью, что и Земля, в 250 раз превосходил бы диаметр Солнца, то вследствие притяжения звезды ни один из испущенных ею лучей не смог бы дойти до нас; следовательно, не исключено, что самые большие из светящихся тел по этой причине являются невидимыми." [цитата по Брагинский В.Б., Полнарёв А. Г. Удивительная гравитация. - М., Наука, 1985]
Однако, как выяснилось в 20-м веке, фотон не обладает массой и не может взаимодействовать с гравитационным полем как весомое вещество. Фотон - это квантованная электромагнитная волна, то есть даже не объект, а процесс. А процессы не могут иметь веса, так как они не являются вещественными объектами. Это всего-лишь движение некоторой среды. (сравните с аналогами: движение воды, движение воздуха, колебания почвы). Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
Bourabai Research - Технологии XXI века Bourabai Research Institution