к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Сквид

Сквид [от англ. Superconducting Quantum Interference Device - сверхпроводящее квантовое интерференционное устройство; сверхпроводящий квантовый интерферометр (магнитометр)] - высокочувствит. устройство для преобразования магн. потока в электрич. сигнал пост. или перем. тока, действие к-рого основано на явлении квантования магн. потока в сверхпроводящем кольце с включёнными в него контактами Джозефсона (КД; см. Джозефсона эффект ).В результате интерференции сверхпроводящих токов, при изменении магн. потока Ф через кольцо С. выходной сигнал осциллирует с периодом Ф0, равным кванту магн. потока Ф0 = h/2e = 2,068*10-15 Вб, что связано с фазовой когерентностью сверхпроводящих электронов на макроскопич. расстояниях. Скачок фазы волновой функции сверхпроводящих электронов на КД8040-92.jpg определяется полным магн. потоком через кольцо (8040-93.jpg), а сверхпроводящий ток через КД равен8040-94.jpg =8040-95.jpg, где Iс - критич. ток КД. Пои токе I > Iс на КД появляется напряжение8040-96.jpg

По числу КД в кольце С. и по способу формирования выходного сигнала различают двухконтактные С. пост. тока (ПТ-С.) и одноконтактные С. с ВЧ-накачкой (ВЧ-С.). В ПТ-С. через КД пропускается пост. ток, больший критич. значения Ic, и измеряется пост. напряжение на контакте (Фx), где Фx - измеряемый внеш. магн. поток. В ВЧ-С. высокочастотный ток Iвч в кольце С. возбуждается резонансным контуром, причём отклик С. Vвчх)снимается с этого же контура.

Первым ПТ-С. можно считать устройство, в к-ром Ж. Мерсеро [1] с сотрудниками впервые в 1964 наблюдали квантовую интерференцию сверхпроводящих токов [1]. В 1967 Дж. Циммерман [2] и А. Силвер [2], изучая на перем. токе интерференц. эффекты в сверх-проводящем кольце с точечным КД [2], положили начало ВЧ-С.

Блок-схема ПТ-С. приведена на рис. 1. Если через симметричную конструкцию ПТ-С. (токи через КД равны) пропустить через кольцо С. пост. ток8040-97.jpg , то на параллельно включённых КД возникает пост. напряжение V, осциллирующее при изменении измеряемого внеш. магн. потока Фx, через кольцо С., при этом макс. значения V(Фx)достигаются при Фx = Ф0(n + 1/2), а минимальные - при Фx = пФ0, п - целое число, макс. размах осцилляции V(Ф) наблюдается при оптим. значении параметра LIС0 = 1, где L - индуктивность кольца. Коэф. преобразования для оптимизированных ПТ-С. равен8040-99.jpg где R - сопротивление шунтированных КД. Шунтирование туннельных КД применяется для создания безгистерезисной вольтамперной характеристики контакта. Современные тонкопланочные планарные ПТ-С., изготовленные методами фото- и электронной литографии, имеют коэф. преобразования до 1 мВ/Ф0.
8040-98.jpg

Рис. 1. Схема ПТ-сквида: ИТ - источник постоянного тока; СУ - согласующее устройство; ГМ - генератор модуляции; У - усилитель; СД - синхронный детектор; ФНЧ - фильтр низких частот.

Усиление и регистрация сигнала С. производятся электронными устройствами, находящимися при комнатной температуре. Для ослабления влияния НЧ-шумов вида 1/f (см. Флуктуации электрические)используется модуляц. метод обработки сигнала С.: в отд. катушку модуляции (Lm на рис. 1) вводится перем. ток частотой 100-200 кГц, создающий через кольцо С. поток с амплитудой ~ Ф0/4. Перем. напряжение на С. усиливается, синхронно детектируется и фильтруется. Согласование низкого импеданса С. с высоким импедансом усилителя осуществляется согласующим устройством типа последоват. контура или резонансного трансформатора. Для измерений в большом диапазоне8040-100.jpg используется глубокая отрицат. обратная связь по магн. потоку. Напряжение через сопротивление обратной связи Rос подаётся в катушку модуляции. В результате измеряемый поток компенсируется, а напряжение на резисторе Rос служит выходным сигналом прибора, линейно связанным с измеряемым потоком в диапазоне8040-101.jpg100-1000 Ф0.

Блок-схема типичного ВЧ-С., работающего на фиксиров. частоте радиочастотного диапазона 10-400 МГц, приведена на рис. 2. С кольцом С. связана катушка резонансного колебат. контура LKCK, возбуждаемого генератором тока ВЧ. Резонансный контур согласует низкий импеданс С. с высоким входным сопротивлением усилителя ВЧ. В зависимости от параметра8040-103.jpg различают безгистерезисный (I < 1) и гистерезисный (l > 1) режимы работы ВЧ-С. В первом случае кольцо С. представляет собой параметрич. индуктивность, осциллирующую с изменением внеш. потока Фх. Изменение индуктивности регистрируется по сдвигу резонансной частоты контура LKCK. Безгистерезисный режим работы ВЧ-С. редко используется в практич. устройствах из-за жёстких ограничений на параметры С., стабильность амплитуды и частоты сигнала ВЧ-накачки.
8040-102.jpg

Рис. 2. Схема ВЧ-сквида: ГВЧ - генератор высокой частоты; УВЧ - усилитель высокой частоты; ГНЧ - генератор модуляции низкой частоты; СД - синхронный детектор, ФНЧ - фильтр низких частот.

Если I > 1, воздействие магн. потока накачки с амплитудой, достаточной для возбуждения в кольце с КД тока Iвч > Iс, приводит к характерным гистерезисным потерям энергии в колебат. контуре, уровень к-рых осциллирует в зависимости от внеш. потока Фх с периодом Ф0. Соответствующее изменение добротности контура Q регистрируется по изменению напряжения Vвчx) на нём. Коэф. преобразования магн. потока в напряжение для ВЧ-С. в гистерезисном режиме равен:
8040-104.jpg

где w - частота накачки, k - коэф. связи контура со С. (оптимален k, для к-рого8040-105.jpg ). Для ВЧ-С. типичны значения коэф. преобразования 20-50 мкВ/Ф0.

Для увеличения отношения сигнал/шум и линеаризации коэф. передачи прибора в схемах ВЧ-С. также применяется дополнит. НЧ-модуляция на частотах 10- 50 кГц и отрицательная обратная связь по магн. потоку.

Обычно измеряемый магн. поток через кольцо С. создаётся током Ixво входной или сигнальной катушке с индуктивностью8040-106.jpg мкГн (Фx = MIx, где8040-107.jpg - взаимная индуктивность сигнальной катушки и кольца С., a kc - коэф. связи].

Предельная чувствительность С. разл. типа характеризуется т. н. энергетич. чувствительностью:
8040-108.jpg

выраженной через спектральную плотность мощности эквивалентного шумового потока8040-109.jpg или шумового тока8040-110.jpg. Эта величина имеет размерность действия, поэтому иногда её выражают в единицах8040-111.jpg *10-34 Дж/Гц.

Энергетич. чувствительность типичных ПТ-С. с L ~ 10-11 Гн ограничена тепловым шумом резисторов, шунтирующих КД, и равна 10-30-10-31 Дж/Гц. Для ряда ПТ-С., охлаждённых до Т < 1К, достигнуты рекордные значения8040-112.jpg при измерениях малых переменных Фх ~ 0,01 Ф0 на частотах 100-200 кГц, где не сказывается шум вида 1/f.

Минимальный детектируемый сигнал ВЧ-С. определяется суммарными шумами усилителя ВЧ, контура и самого С. В оптимизиров. конструкциях при частоте накачки 20-30 МГц шумы характеризуются энергетич. чувствительностью8040-113.jpg Дж/Гц. Поскольку коэф. преобразования ВЧ-С. растёт с частотой, а собств. шумы падают, выигрыш в чувствительности можно получить, повышая частоту до СВЧ-диапазона (напр., при f = 10 ГГц получено8040-114.jpg Дж/Гц). Однако это приводит к существ. усложнению конструкции прибора.

В магн. поток, измеряемый С., легко преобразовать многие магн. и электрич. величины: магн. поле и его градиенты, магн. момент, ток, напряжение и др. Обычно это преобразование осуществляется с помощью сверхпроводящего трансформатора магн. потока: сигнальная катушка С. образует замкнутый сверхпроводящий контур с приёмной катушкой, непосредственно воспринимающей изменение магн. потока. В силу сохранения потока в этой цепи экранирующий ток «переносит» часть измеряемого потока в сигнальную катушку, связанную с кольцом С.

Чувствительность сверхпроводящих С--магнитометров достигает8040-115.jpg Тл/Гц1/2 и определяется уже магн. шумом в тщательно экранированных помещениях. По чувствительности С--магнитометры превосходят традиц. магнитометры на 2-3 порядка. С--магнитометры применяются, напр., для измерения магнитных полей биологических объектов [8], магнитометрич. исследований в геофизике и геологии [9], измерения магн. восприимчивости веществ и материалов.

Применение С. для измерений электрич. величин позволяет достичь пороговой чувствительности по току 10-12-10-148040-116.jpg при нулевом сопротивлении сигнальной катушки. По напряжению чувствительность ограничена тепловым шумом низкоомных (10-4-10-8 Ом) источников сигнала и составляет при низких температурах 10-13-10-158040-117.jpg. С--гальванометры и С--вольтметры служат для измерения проводимости и термоэлектрич. эффектов в нормальных и сверхпроводящих металлах. В метрологии С--гальванометры служат в качестве нуль-индикаторов в эталонных установках, к-рые воспроизводят единицу эдс (Вольт) на основе эффекта Джозефсона и единицу сопротивления (Ом) на основе квантового Холла эффекта (см. Квантовая метрология; )шумовой термометр на основе С. используется при установлении шкалы сверхнизких температур [5].

Осн. недостатком С., препятствующим их более широкому распространению, является необходимость охлаждения до уровня гелиевых или водородных температур при применении традиц. сверхпроводящих материалов. Открытие в 1986-87 оксидных высокотемпературных сверхпроводников с Тс8041-1.jpg 100 К открывает перспективы создания С. при азотных температурах [10].

Литература по сквидам

  1. Jakleviс R. С. и др., Quantum interference from a static vector potential in a field-free region, «Phys. Rev. Lett.», 1964, v. 12, Ml 11, p. 274;
  2. Silver A. H., Zimmerman J. E., Quantum states and transitions in weakly connected superconducting rings, «Phys. Rev.», 1967, v. 157, p. 317;
  3. Cолимар Л., Туннельный эффект в сверхпроводниках и его применение, пер. с англ., М., 1974;
  4. Лихарев К. К., Ульрих Б. Т., Системы с джозефсоновскими контактами, М., 1978;
  5. Слабая сверхпроводимость. Квантовые интерферометры и их применения, пер. с англ., М., 1980;
  6. Бароне А., Патерно Д., Эффект Джозефсона: физика и применения, пер. с англ., М., 1984;
  7. Лихарев К. К., Введение в динамику джозефсоновских переходов, М., 1985;
  8. Введенский В.Л., Ожогин В. И., Сверхчувствительная магнитометрия и биомагнетизм, М., 1986;
  9. Одегнал М., Некоторые нестандартные применения сверхпроводящих квантовых интерферометров - сквидов (обзор), «Физика низких температур», 1985, т. 11, с. 5;
  10. Тesсhe С. D., Superconducting magnetometers, «Cryogenics», 1989, v. 29, p. 1135.

И. Я. Краспополип

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

Знаете ли Вы, что такое "усталость света"?
Усталость света, анг. tired light - это явление потери энергии квантом электромагнитного излучения при прохождении космических расстояний, то же самое, что эффект красного смещения спектра далеких галактик, обнаруженный Эдвином Хабблом в 1926 г.
На самом деле кванты света, проходя миллиарды световых лет, отдают свою энергию эфиру, "пустому пространству", так как он является реальной физической средой - носителем электромагнитных колебаний с ненулевой вязкостью или трением, и, следовательно, колебания в этой среде должны затухать с расходом энергии на трение. Трение это чрезвычайно мало, а потому эффект "старения света" или "красное смещение Хаббла" обнаруживается лишь на межгалактических расстояниях.
Таким образом, свет далеких звезд не суммируется со светом ближних. Далекие звезды становятся красными, а совсем далекие уходят в радиодиапазон и перестают быть видимыми вообще. Это реально наблюдаемое явление астрономии глубокого космоса. Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
Bourabai Research - Технологии XXI века Bourabai Research Institution