к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Скользящий разряд

Скользящий разряд - разновидность импульсного искрового разряда по поверхности диэлектрика. Картины распределения искровых каналов по поверхности диэлектрика при С. р. впервые наблюдались в 1777 Г. К. Лихтенбергом (G. Ch. Lichtenberg) и наз. Лихтенберга фигурами. В сильных разрядах высокие давления и температуры деформируют поверхность диэлектрика, запечатлевая фигуры Лихтенберга; в слабых разрядах их можно сделать видимыми, посыпая поверхность диэлектрика спец. порошком или проявляя подложенную под слой диэлектрика фотопластинку. Впервые в фотографии С. р. был использован в 1887 А. Тёплером (A. Toepler).

Типичная конфигурация электродов, между к-рыми происходит С. р., приведена на рис. 1: один из электродов (1)представляет собой тонкую проволочку, другой (3) - плоскую поверхность, отделённую от первого слоем диэлектрика (2), по к-рому стелется разряд.
8041-119.jpg

Рис. 1. Скользящий по поверхности диэлектрика разряд: 1 - инициирующий электрод; 2 - диэлектрическая подложка; 3 - металлическая подложка - второй электрод.

Такая электродная конфигурация создаёт резко неравномерное электрич. поле Е с преобладанием нормальной составляющей к поверхности диэлектрика. Поэтому в С. р. могут быть достигнуты высокие значения Е при умеренных амплитудах питающих высоковольтных импульсов.

При воздействии на электроды С. р. высоковольтного импульса напряжения с амплитудой 104-105 В и скоростью нарастания ~1012 В/с в разрядном промежутке складываются условия, характерные для наносекундного пробоя электрического. Напряжённость электрич. поля в промежутке может усиливаться до 102 раз на микронеровностях поверхности диэлектрика и электродов. При этом время развития разряда становится соизмеримым со временем протекания элементарных процессов в плазме, что приводит к отклонению от лавинного (таунсендовского) и стримерного механизмов (см. Пробой газа ),и даже при протекании больших токов (-105 А) разряд остаётся диффузным, канал дугового разряда не образуется.

В таких жёстких режимах ток лидерной (незавершённой) стадии может превышать ток последующего завершённого С. р., замыкающего разрядный промежуток, а излучение разряда на этой стадии содержит интенсивную УФ-компоненту (вплоть до мягкого рентгена). Это излучение создаёт свободные фотоэлектроны на расстояниях, значительно превышающих критич. размеры первичных лавин. При импульсном напряжении 50- 200 кВ вдоль поверхности диэлектрика легко возникают плазменные поверхности протяжённостью до 200 см, яркостная темп-pa к-рых может достигать 6*104 К. Специфика С. р. определяется активным взаимодействием плазмы разряда с поверхностью диэлектрика, что отражается на спектральных характеристиках излучения плазмы. Канал С. р. ограничен в пространстве диэлектрич. подложкой, поэтому площадь его сечения меньше, а погонное электрич. сопротивление соответственно больше, чем у свободного искрового разряда. Малая индуктивность и. относительно большое сопротивление завершённого С. р. обеспечивают высокую мощность энерговыделения в канале разряда, что приводит к образованию плотной высокотемпературной плазмы с большой площадью излучающей поверхности (8041-120.jpgм2).
8041-121.jpg

Рис. 2. Спектр излучения электрических разрядов Б азоте при атмосферном давлении: а - искровой разряд между вольфрамовыми электродами; б - завершённый скользящий разряд по поверхности лавсановой плёнки.

Поступление паров диэлектрика в плазму С. р. изменяет спектр его излучения, что важно при использовании С. р. как открытого источника УФ-излучения. На рис. 2 представлены спектры обычного искрового и скользящего по поверхности диэлектрика разрядов при одинаковом уд. энерговкладе. Видно, что в области вакуумного ультрафиолета интенсивность спектральных линий в случае С. р. на порядок выше. Т. к. спектр излучения С. р. имеет ярко выраженную дискретность, то возможно повышать интенсивность излучения в нужной спектральной области подбором соответствующего материала диэлектрич. подложки.

С. р. широко применяется при решении ряда научно-прикладных задач, в частности при создании низкоиндуктивных сильноточных коммутаторов, источников предионизации в импульсных газовых лазерах, плазменных электродов для организации однородного сильноточного объёмного разряда при повышенных давлениях (см. Электроды плазменные ).Плазма С. р. используется в качестве активной среды лазеров на самоограниченных переходах (лазеры на N2, Ar, Ne и др.).

Литература по скользящим разрядам

  1. Фольрат К., Искровые источники света и высокочастотная кинематография, в кн.: Физика быстропротекающих процессов, пер. с нем., англ., т. 1, М., 1971;
  2. Дашук П. Н., Челноков Л. Л., Ярышева М. Д., Характеристики скользящего разряда по поверхности твердых диэлектриков применительно к высоковольтным коммутаторам, «Электронная техника, сер, 4. Электровакуумные и газоразрядные приборы», 1975, № 6, с. 9;
  3. Андреев С. И., 3обов Е. А., Сидоров А. Н., Метод управления развитием и формированием системы параллельных каналов скользящих искр в воздухе при атмосферном давлении, «Ж. ПМТФ», 1976, № 3, с. 12;
  4. 3арослов Д. Ю., Кузьмин Г. П., Тарасенко В. Ф., Скользящий разряд с СО2 и эксимерных лазерах, «Радиотехника и электроника», 1984, т. 29, в. 7, с. 1217;
  5. Брынзалов П. П. и др., Азотный лазер на основе скользящего по поверхности диэлектрика разряда, «Квантовая электроника», 1988, т. 15, № 10, с. 1971.

Г. П. Кузьмин

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

Знаете ли Вы, почему "черные дыры" - фикция?
Согласно релятивистской мифологии, "чёрная дыра - это область в пространстве-времени, гравитационное притяжение которой настолько велико, что покинуть её не могут даже объекты, движущиеся со скоростью света (в том числе и кванты самого света). Граница этой области называется горизонтом событий, а её характерный размер - гравитационным радиусом. В простейшем случае сферически симметричной чёрной дыры он равен радиусу Шварцшильда".
На самом деле миф о черных дырах есть порождение мифа о фотоне - пушечном ядре. Этот миф родился еще в античные времена. Математическое развитие он получил в трудах Исаака Ньютона в виде корпускулярной теории света. Корпускуле света приписывалась масса. Из этого следовало, что при высоких ускорениях свободного падения возможен поворот траектории луча света вспять, по параболе, как это происходит с пушечным ядром в гравитационном поле Земли.
Отсюда родились сказки о "радиусе Шварцшильда", "черных дырах Хокинга" и прочих безудержных фантазиях пропагандистов релятивизма.
Впрочем, эти сказки несколько древнее. В 1795 году математик Пьер Симон Лаплас писал:
"Если бы диаметр светящейся звезды с той же плотностью, что и Земля, в 250 раз превосходил бы диаметр Солнца, то вследствие притяжения звезды ни один из испущенных ею лучей не смог бы дойти до нас; следовательно, не исключено, что самые большие из светящихся тел по этой причине являются невидимыми." [цитата по Брагинский В.Б., Полнарёв А. Г. Удивительная гравитация. - М., Наука, 1985]
Однако, как выяснилось в 20-м веке, фотон не обладает массой и не может взаимодействовать с гравитационным полем как весомое вещество. Фотон - это квантованная электромагнитная волна, то есть даже не объект, а процесс. А процессы не могут иметь веса, так как они не являются вещественными объектами. Это всего-лишь движение некоторой среды. (сравните с аналогами: движение воды, движение воздуха, колебания почвы). Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
Bourabai Research - Технологии XXI века Bourabai Research Institution