к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Дуговой разряд

Дуговой разряд - самостоятельный квазистационарный электрический разряд в газе, горящий практически при любых давлениях газа, превышающих 10-2_10-4 тор, при постоянной или меняющейся с низкой частотой (до 103 Гц) разности потенциалов между электродами и отличающийся высокой плотностью тока на катоде (102_108 А/см2) и низким катодным падением потенциала (не превышает эфф. потенциала ионизации среды в разрядном промежутке). Известно много разновидностей Д. р., каждая из к-рых существует только при вполне определённых внеш. и граничных условиях. Почти у всех видов Д. р. ток на катоде стянут в малое очень яркое катодное пятно, беспорядочно перемещающееся по всей поверхности катода. Темп-ра поверхности в пятне достигает величины температуры кипения (или возгонки) материала катода. Поэтому значительную (иногда главную) роль в катодном механизме переноса тока играет термоэлектронная эмиссия .Над катодным пятном образуется слой положит. объёмного заряда, обеспечивающего ускорение эмитируемых электронов до энергий, достаточных для ударной ионизации атомов и молекул среды. Т. к. толщина слоя крайне мала (менее длины свободного пробега электрона), создаётся высокая напряжённость поля у поверхности катода, особенно вблизи естеств. микронеоднородностей поверхности, благодаря чему существенной оказывается и автоэлектронная эмиссия .Высокая плотность тока в катодном пятне и "перескоки" пятна с точки на точку создают условия для проявления взрывной электронной эмиссии. Известны и др. катодные механизмы Д. р. (факельный вынос, плазменный катод ,термокатод и т. д.). Относит. роль каждого из них зависит от конкретного вида Д. р. Непосредственно к зоне катодного падения потенциала примыкает положительный столб ,простирающийся до анодной области. Прианодного скачка потенциала чаще не наблюдается. На аноде обычно формируется яркое анодное пятно, несколько больших размеров и менее подвижное, чем катодное. Темп-pa поверхности в анодном пятне такая же или несколько ниже, чем в катодном. В нек-рых типах Д. р. при токах в десятки А на катоде и аноде возникают факелы, имеющие характер плазменных струй, вытекающих с большой скоростью нормально к поверхности электродов. При токах более 100_300А возникают добавочные факелы и столб Д. р. приобретает структуру пучка плазменных нитей. Природа и механизм образования факелов изучены пока недостаточно. При появлении факелов положит. столб соединяет две произвольно перемещающиеся точки катодного и анодного факелов и может быть ориентирован относительно них любым образом (напр., перпендикулярен); в столбе особенно легко проявляются многие неустойчивости. Нагретый до высокой температуры и ионизованный газ в столбе находится в состоянии плазмы. В граничной зоне между катодным слоем и столбом ток эмиссии переходит в ток проводимости. Электропроводность плазмы в зависимости от вида Д. р. может принимать практически любые значения вплоть до значений электропроводности металлов, но, как правило, она на неск. порядков меньше. Выделяющаяся в столбе джоулева теплота восполняет все потери энергии из столба плазмы, поддерживая неизменным её состояние, к-рое определяется характером распределения энергии по всем степеням свободы. Полностью равновесные распределения, строго говоря, в плазме Д. р. никогда не реализуются. Однако состояние сверхплотной плазмы при концентрации заряж. частиц N/1018 см-3 иногда можно считать близким к полному термодинамич. равновесию. При меньших плотностях (до N~1015 см-3) может реализоваться состояние т. н. л о к а л ь н о г о термического равновесия, при к-ром в каждой точке плазмы распределения любых частиц по скоростям в основном максвелловские, распределения атомов и молекул по возбуждённым состояниям - больцмановские, степени диссоциации и ионизации удовлетворяют закону действующих масс, а давление - уравнению состояния, причём во все эти распределения входит одно и то же значение температуры Т, являющееся функцией координат. Исключение в этом случае составляет лишь излучение плазмы: оно далеко от равновесного (планковского) и определяется составом плазмы и скоростями конкретных радиац. процессов (линейчатое излучение, сплошное тормозное и рекомбинационное и т. д.). При очень ограниченных размерах столба Д. р. (неск. мм) даже в плотной плазме (N[ 1018 см-3 для Не, N<1016 см-3 для др. газов) состояние локального термич. равновесия может нарушаться за счёт процессов переноса (см. Переноса процессы в плазме), включая радиационные. Это выражается в сильном отклонении состава плазмы и заселённостей возбуждённых уровней от их равновесных значений. В таких случаях сохраняется обычно лишь частичное локальное термич. равновесие, характеризующееся равновесием между заселённостями самых верхних возбуждённых уровней и концентрацией свободных электронов, к-рые предполагаются в осн. максвелловскими. Т. о., кинетика плазмы в столбе Д. р. при высоких плотностях заряж. частиц определяется гл. обр. процессами соударений, а по мере снижения плотности все большую роль играют радиац. процессы. Границы применимости указанных выше приближений в каждом конкретном случае можно грубо оценить с помощью соответствующих критериев, но при этом всегда необходимо контролировать выполнение этих признаков применимости. Соблюдение этого условия необходимо для доказательства адекватности выбранных методов диагностики плазмы. Длина столба Д. р. в принципе может быть произвольной, но его диаметр жёстко определяется условиями баланса выделяющейся и теряемой энергии. С ростом тока или давления тип осн. механизма потерь неоднократно меняется; при таких сменах может происходить контракция столба (см. Контргаированный разряд). Для Д. р. наиб. характерны диссоциативная контракция (при токе iд) и пинч-эффект (при токе iп). Первая из них связана с резким изменением теплопроводности плазмы в молекулярных газах в зоне интенсивной диссоциации, вторая возникает при превышении магнитного давления над газокинетическим. Конкретные значения токов iд и iп очень сильно зависят от условий горения разряда; обычно 1[iд<102 А; iп/103 А. Д. р. при i>iд принято называть сильноточным, при i>in - сверхсильноточным. Широкое развитие приобрело матем. моделирование столба Д. р. Матем. модели включают в себя уравнения кинетики, электродинамики, а при необходимости и магнитной гидродинамики плазмы. В большинстве случаев такие модели в принципе позволяют с достаточным приближением рассчитать на ЭВМ значения всех параметров столба плазмы, однако при этом необходим тщательный контроль адекватности модели, что само по себе представляет также очень сложную задачу. Свойства и конкретные параметры Д. р. меняются в очень широких пределах в зависимости от его типа и условий горения. Классич. примером является Д. р. пост. тока, свободно горящий в воздухе между угольными электродами. Его типичные параметры: ток от ампера до сотен ампер, катодное падение потенциала ~10 В, межэлектродное расстояние - от мм до см, темп-pa плазмы ~7000 К, темп-pa поверхности в анодном пятне ~3900 К. Д. р. применяется в технике (угольные лампы) и науке (эталонный источник света). Д. р. с угольным анодом, просверленным и заполненным исследуемыми веществами или пропитанным их растворами, широко используется в спектральном анализе руд, минералов, солей и т. п. Темп-pa плазмы при введении примесей исследуемых веществ снижается прибл. пропорционально эфф. потенциалу ионизации среды. Д. р. пост. тока может устойчиво гореть в воздухе как между угольными, так и между металлич. электродами. Но разряд переменного тока горит самостоятельно при любых токах только между угольными электродами. При использовании же металлич. электродов для поддержания разряда при токах <10 А необходим вспомогат. ионизатор (с этой целью в практике спектрального анализа, напр., применяется наложение ВЧ-разряда на дуговой, горящий при частоте 50 Гц). Д. р. становится фактически самостоятельным и при применениях накаливаемого катода (обычно при низких давлениях газа). Однако практически все характеристики разряда при этом остаются типично "дуговыми", за исключением величины катодного падения потенциала, к-рая ещё снижается. Аналогичное снижение происходит и при использовании плазменных катодов (см. также Низковольтная дуга). Применение Д. р. в качестве спец. источника света в научных исследованиях требует обычно стабилизации положит. столба в пространстве. Такая стабилизация может осуществляться шайбами или стенками разрядной трубки, тангенциальными потоками жидкости или газа в узких каналах, вихревым потоком газа вдоль столба свободно горящей дуги, магн. полем и т. д. Д. р. применяется также в разл. конструкциях генераторов плазмы (напр., в плазмотронах ),в нек-рых плазмохим. реакторах, в электросварке, в разл. электронных и осветит. приборах (коммутаторы, ртутные выпрямители, газотроны, газоразрядные источники света и т. д.).

Литература по дуговому разряду

  1. Грановский В. Л., Электрический ток в газе, М., 1971;
  2. Экспериментальные исследования плазмотронов, под ред. М. Ф. Жукова, Новосиб., 1977.

В. Н. Колесников

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

Знаете ли Вы, в чем ложность понятия "физический вакуум"?

Физический вакуум - понятие релятивистской квантовой физики, под ним там понимают низшее (основное) энергетическое состояние квантованного поля, обладающее нулевыми импульсом, моментом импульса и другими квантовыми числами. Физическим вакуумом релятивистские теоретики называют полностью лишённое вещества пространство, заполненное неизмеряемым, а значит, лишь воображаемым полем. Такое состояние по мнению релятивистов не является абсолютной пустотой, но пространством, заполненным некими фантомными (виртуальными) частицами. Релятивистская квантовая теория поля утверждает, что, в согласии с принципом неопределённости Гейзенберга, в физическом вакууме постоянно рождаются и исчезают виртуальные, то есть кажущиеся (кому кажущиеся?), частицы: происходят так называемые нулевые колебания полей. Виртуальные частицы физического вакуума, а следовательно, он сам, по определению не имеют системы отсчета, так как в противном случае нарушался бы принцип относительности Эйнштейна, на котором основывается теория относительности (то есть стала бы возможной абсолютная система измерения с отсчетом от частиц физического вакуума, что в свою очередь однозначно опровергло бы принцип относительности, на котором постороена СТО). Таким образом, физический вакуум и его частицы не есть элементы физического мира, но лишь элементы теории относительности, которые существуют не в реальном мире, но лишь в релятивистских формулах, нарушая при этом принцип причинности (возникают и исчезают беспричинно), принцип объективности (виртуальные частицы можно считать в зависимсоти от желания теоретика либо существующими, либо не существующими), принцип фактической измеримости (не наблюдаемы, не имеют своей ИСО).

Когда тот или иной физик использует понятие "физический вакуум", он либо не понимает абсурдности этого термина, либо лукавит, являясь скрытым или явным приверженцем релятивистской идеологии.

Понять абсурдность этого понятия легче всего обратившись к истокам его возникновения. Рождено оно было Полем Дираком в 1930-х, когда стало ясно, что отрицание эфира в чистом виде, как это делал великий математик, но посредственный физик Анри Пуанкаре, уже нельзя. Слишком много фактов противоречит этому.

Для защиты релятивизма Поль Дирак ввел афизическое и алогичное понятие отрицательной энергии, а затем и существование "моря" двух компенсирующих друг друга энергий в вакууме - положительной и отрицательной, а также "моря" компенсирующих друг друга частиц - виртуальных (то есть кажущихся) электронов и позитронов в вакууме.

Однако такая постановка является внутренне противоречивой (виртуальные частицы ненаблюдаемы и их по произволу можно считать в одном случае отсутствующими, а в другом - присутствующими) и противоречащей релятивизму (то есть отрицанию эфира, так как при наличии таких частиц в вакууме релятивизм уже просто невозможен). Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
Bourabai Research - Технологии XXI века Bourabai Research Institution