к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Магнитная термометрия

Магнитная термометрия - метод измерения низких температур, основанный на существовании сильной температурной зависимости магн. свойств ряда веществ. В более узком смысле термин "М. т." относится к методу измерения температур, в к-ром термометрич. параметром служит магнитная восприимчивость 2565-86.jpgпара-магн. соли или ядерного парамагнетика. В этом методе за магн. температуру принимается величина 2565-87.jpg , где С - константа в Кюри законе (иногда вместо закона Кюри используют Кюри-Вейса закон). В области температур, в к-рой выполняется закон Кюри, 2565-88.jpg совпадает с абс. термодинамич. температурой Т. При понижении температуры значения Т и 2565-89.jpg могут существенно различаться. Для установления связи между Т* и Т в этом случае проводят калибровку используемой парамагн. соли, исходя из второго начала термодинамики

2565-90.jpg

где 2565-91.jpg - теплоёмкость, измеренная с помощью магн. термометра, S - энтропия, Н - магн. поле. Величину2565-92.jpgнаходят экспериментально, адиабатически размагничивая соль от разл. начальных значений магн. поля и вычисляя зависимость S (H)при высоких темп-pax, где парамагн. соль подчиняется закону Кюри. Одновременно измеряют получаемую при размагничивании от данного значения поля температуру 2565-93.jpg . Т. о. находят зависимость 2565-94.jpg и соответственно величину 2565-95.jpg, Практически магн. температуру 2565-96.jpg переводят в абсолютную, используя таблицы, составленные для ряда солей.

М. т. применяется для измерения как температуры магн. подсистемы парамагнетика, так и температуры др. подсистем, приведённых в тепловое равновесие с магн. подсистемой. Для измерения температур в диапазоне 1/0,01К обычно применяется церий-магниевый нитрат (ЦМН), магн. восприимчивость к-рого подчиняется закону Кюри - Вейса. Этой зависимостью удобно пользоваться до температур 2565-97.jpg (Тс - темп-pa упорядочения, для ЦМН 2565-98.jpg. При более низких темп-pax магн. восприимчивость ЦМН описывается более сложной зависимостью. Для измерения более низких температур (до ~1 мК) используют ЦМН, в к-ром Се частично замещён La. Восприимчивость парамагн. соли измеряют мостами перем. тока по сравнению взаимоиндуктивности двух одинаковых катушек, в одной из к-рых находится образец соли, а при малых количествах соли - сверхпроводящим квантовым интерферометром магн. потока - СКИМП (или Сквид)[разрешение по температуре 2565-99.jpg =0,001 К-1 удаётся получить с использованием только 1 мг соли].

Магн. термометр на основе парамагн. соли является вторичным. Его калибруют, определяя константы в законе Кюри или Кюри - Вейса др. методом (по другому термометру), обычно в области температур 2-0,5 К. Точность измерения магн. температуры в этом диапазоне не превосходит 0,1%.

Для измерения в миллиградусном и микроградусном диапазоне температур используют датчики на основе ядерного магнетизма веществ (Си, Al, Tl, Pt, Auln2), у к-рых ядерная магн. восприимчивость подчиняется закону Кюри. Т. к. ядерная восприимчивость на неск. порядков меньше электронной, особое внимание приходится уделять чистоте используемых веществ. Статич. методы измерения ядерной намагниченности с использованием СКИМПа (сквида) пригодны только для образцов, в к-рых магнетизм электронов не влияет на результаты при всех темп-pax, при к-рых проходят измерения. Насыщение намагниченности электронной составляющей достигается наложением достаточно больших внеш. магн. полей. К преимуществам статич. метода измерения ядерной намагниченности относится малая мощность, выделяемая в термометре, к-рая может быть уменьшена до очень малой величины (2565-100.jpg Вт).

Резонансные методы измерения ядерной намагниченности имеют очевидное преимущество по сравнению со статическими, т. к. ларморовские частоты ядер и электронов аримесных атомов различаются на неск. порядков. Используются как непрерывные, так и импульсные методы ядерного магнитного резонанса. В случае ЯМР, осуществляемого в непрерывном режиме, восприимчивость ядер измеряется по величине сигнала поглощения радиочастотного (РЧ-) поля, а в импульсном режиме - по величине сигнала индукции. Методы непрерывного ЯМР позволяют проводить измерения с большей точностью, чем импульсные методы, однако весьма серьёзным мешающим фактором является перегрев ядерной спиновой системы РЧ-полем. При импульсном ЯМР величина сигнала индукции пропорциональна величине намагниченности ядер до подачи РЧ-импульса. Поэтому, увеличивая значение задержки между импульсами, можно контролировать перегрев ядерной спиновой системы.

Наиб. распространён платиновый импульсный ЯМР-термометр. В платине время ядерной спин-решёточной релаксации 2565-101.jpgподчиняется закону Коринги2565-102.jpg с малой величиной постоянной Коринги 2565-103.jpg что обеспечивает быстрое установление равновесия между температурой ядер и электронов проводимости. Кроме того, измерение 2565-104.jpg часто используют для самокалибровки платинового ЯМР-термометра. К перспективным видам М. т. для миллиградусной области температур относится использование СКИМПа в методах ЯМР, что позволит существенно уменьшить погрешности измерений за счёт снижения мощности, выделяемой в ядерную спиновую систему.

Литература по магнитной термометрии

  1. Гольдман М., Спиновая температура и ЯМР в твердых телах, пер. с англ., М., 1972;
  2. Лоунасмаа О. В., Принципы и методы получения температуры ниже 1 К, пер. с англ., М., 1977.

Ю. М. Буньков

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

Знаете ли Вы, в чем ложность понятия "физический вакуум"?

Физический вакуум - понятие релятивистской квантовой физики, под ним там понимают низшее (основное) энергетическое состояние квантованного поля, обладающее нулевыми импульсом, моментом импульса и другими квантовыми числами. Физическим вакуумом релятивистские теоретики называют полностью лишённое вещества пространство, заполненное неизмеряемым, а значит, лишь воображаемым полем. Такое состояние по мнению релятивистов не является абсолютной пустотой, но пространством, заполненным некими фантомными (виртуальными) частицами. Релятивистская квантовая теория поля утверждает, что, в согласии с принципом неопределённости Гейзенберга, в физическом вакууме постоянно рождаются и исчезают виртуальные, то есть кажущиеся (кому кажущиеся?), частицы: происходят так называемые нулевые колебания полей. Виртуальные частицы физического вакуума, а следовательно, он сам, по определению не имеют системы отсчета, так как в противном случае нарушался бы принцип относительности Эйнштейна, на котором основывается теория относительности (то есть стала бы возможной абсолютная система измерения с отсчетом от частиц физического вакуума, что в свою очередь однозначно опровергло бы принцип относительности, на котором постороена СТО). Таким образом, физический вакуум и его частицы не есть элементы физического мира, но лишь элементы теории относительности, которые существуют не в реальном мире, но лишь в релятивистских формулах, нарушая при этом принцип причинности (возникают и исчезают беспричинно), принцип объективности (виртуальные частицы можно считать в зависимсоти от желания теоретика либо существующими, либо не существующими), принцип фактической измеримости (не наблюдаемы, не имеют своей ИСО).

Когда тот или иной физик использует понятие "физический вакуум", он либо не понимает абсурдности этого термина, либо лукавит, являясь скрытым или явным приверженцем релятивистской идеологии.

Понять абсурдность этого понятия легче всего обратившись к истокам его возникновения. Рождено оно было Полем Дираком в 1930-х, когда стало ясно, что отрицание эфира в чистом виде, как это делал великий математик, но посредственный физик Анри Пуанкаре, уже нельзя. Слишком много фактов противоречит этому.

Для защиты релятивизма Поль Дирак ввел афизическое и алогичное понятие отрицательной энергии, а затем и существование "моря" двух компенсирующих друг друга энергий в вакууме - положительной и отрицательной, а также "моря" компенсирующих друг друга частиц - виртуальных (то есть кажущихся) электронов и позитронов в вакууме.

Однако такая постановка является внутренне противоречивой (виртуальные частицы ненаблюдаемы и их по произволу можно считать в одном случае отсутствующими, а в другом - присутствующими) и противоречащей релятивизму (то есть отрицанию эфира, так как при наличии таких частиц в вакууме релятивизм уже просто невозможен). Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
Bourabai Research - Технологии XXI века Bourabai Research Institution