к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Низкие температуры (криогенные температуры)

Низкие температуры (криогенные температуры) - обычно температуры, лежащие ниже точки кипения жидкого воздуха (ок. 80 К). Согласно рекомендации, принятой 13-м конгрессом Междунар. ин-та холода (1971), криогенными температурами следует называть температуры ниже 120 К.
Получение Н. т. Для получения и поддержания Н. т. обычно используют сжиженные газы (хладагенты). В сосуде Дьюара, содержащем сжиженный газ, испаряющийся под атм. давлением, достаточно хорошо поддерживается пост. темп-pa Тн кипения хладагента. Практически применяют след. хладагенты, воздух15001-38.jpg 80 К), азот (Тн = 77,4 К), неон (Тн = 27,1 К), водород (Тн = 20,4 К), гелий (Тн = 4,2 К). Для получения жидких газов служат спец. установки - ожижители, в к-рых сильно сжатый газ при расширении до обычного давления охлаждается и конденсируется (см. Джоуля - Томсона эффект].
Откачивая испаряющийся газ из герметизпр. сосуда, можно уменьшать давление над жидкостью и тем самым понижать температуру её кипения. Естеств. или принудит. конвекция и хорошая теплопроводность хладагента обеспечивают при этом однородность температуры во всём объёме жидкости. Таким путём удаётся перекрыть широкий диапазон температур: от 77 до 63 К при помощи жидкого азота, от 27 до 24 К - жидкого неона, от 20 до 14 К - жидкого водорода, от 4,2 до 1 К - жидкого гелия. Методом откачки нельзя получить температуру ниже тройной точки хладагента. При более низких темп-pax вещество затвердевает и теряет свои качества хладагента. Промежуточные температуры, лежащие между указанными выше интервалами, достигаются спец. методами. Охлаждаемый объект теплоизолируют от хладагента, помещая его, напр., внутрь вакуумной камеры, погружённой в сжиженный газ. При небольшом контролируемом выделении теплоты в камере (в ней имеется электрич. нагреватель) темп-pa исследуемого объекта повышается по сравнению с температурой кипения хладагента и может поддерживаться с высокой стабильностью на требуемом уровне. В др. способе получения промежуточных температур охлаждаемый образец помещают над поверхностью испаряющегося хладагента и регулируют скорость испарения жидкости нагревателем. Отвод теплоты от исследуемого объекта здесь осуществляет поток испаряющегося газа. Применяется также метод охлаждения, при к-ром холодный газ, получаемый при испарении хладагента, прогоняется через теплообменник, находящийся в тепловом контакте с охлаждаемым объектом.
Гелий при атм. давлении остаётся жидким вплоть до абс. нуля температуры (см. Гелий жидкий). Однако при откачке паров жидкого 4Не (природного изотопа гелия) обычно не удаётся получить температуру существенно ниже 1 К, даже применяя очень мощные насосы (этому мешают чрезвычайно малая упругость насыщ. паров 4Не иего сверхтекучесть). Откачкой паров изотопа 3Не (Тн= = 3,2 К) удаётся достичь температур ~ 0,3 К. Область температур ниже 0,3 К наз. сверхнизкими температурами. Методом адиабатич. размагничивания парамагн. солей (см. Магнитное охлаждение)удаётся достичь температур ~10-3К. Тем же методом с использованием ядерного парамагнетизма в системе атомных ядер были достигнуты температуры ~10-6 К. Принципиальную проблему в методе адиабатич. размагничивания (как, впрочем, и в др. методах получения Н. т.) составляет осуществление хорошего теплового контакта между объектом, к-рый охлаждают, и охлаждающей системой. Особенно это трудно достижимо в случае системы атомных ядер. Совокупность ядер атомов можно охладить до сверхнизких температур, но добиться такой же степени охлаждения вещества, содержащего эти ядра, не удаётся.
Для получения температур порядка неск. мК широко пользуются более удобным методом - растворением жидкого 3Не в жидком 4Не. Применяют для этой цели рефрижераторы растворения (см. Крuocmam). Их действие основано на том, что 3Не сохраняет конечную растворимость (ок. 6%) в жидком 4Не вплоть до абс. нуля температуры. Поэтому при соприкосновении почти чистого жидкого 3Не с разбавленным раствором 3Не в 4Не атомы 3Не переходят в раствор. При этом поглощается теплота растворения и темп-pa раствора понижается. Растворение осуществляется в одном месте прибора (в камере растворения), а удаление атомов 3Не из раствора путём откачки - в другом (в камере испарения). При непрерывной циркуляции 3Не, осуществляемой системой насосов и теплообменников, можно поддерживать в камере растворения температуру 10 - 30 мК неограниченно долго. Гелий 3Не можно охладить ещё сильнее, используя Померанчука эффект .Жидкий 3Не затвердевает при давлении более 3 х 106 Па. В области температур ниже 0,3 К увеличение давления (в пределе до 3,4 х 106 Па) сопровождается поглощением теплоты и понижением температуры равновесной смеси жидкой и твёрдой фаз (затвердевание идёт с поглощением теплоты). Этим методом были достигнуты температуры ~1 - 2 мК.
Измерение Н. т. Первичным прибором для измерения термодинамич. температуры вплоть до 1 К служит газовый термометр. Др. вариантами первичного термометра являются акустич. и шумовой термометры, действие к-рых основано на связи термодинамич. температуры соответственно со значением скорости звука в газе и с интенсивностью тепловых флуктуаций напряжения в электрич. цепи. Первичные прецизионные термометры используют в осп. для определения температур легко воспроизводимых фазовых равновесий в однокомпонентных системах (т. н. репериых точек), к-рые служат опорными температурными точками Международной практической температурной шкалы (МПТШ-68).
Для измерения температуры от 630,74 °С до 13,81 К по МПТШ-68 с точностью ~ 0,001 К служит платиновый термометр сопротивления. МПТШ-68 пока не продлена ниже 13,8 К ввиду отсутствия в этой области Н. т. вторичного термометра, не уступающего по чувствительности, точности и воспроизводимости показаний платиновому термометру сопротивления при более высоких темп-pax. В диапазоне 0,3 - 5,2 К низкотемпературная термометрия основана на зависимости давления насыщ. паров psгелия от температуры, устанавливаемой газовым термометром. Эта зависимость была принята в качестве междунар. температурной шкалы в области 1,5 - 5,2 К (шкала 4Не, 1958) и 0,3 - 3,3 К (шкала 3Не, 1962). Зависимость ps)в этих температурных диапазонах не может быть представлена простой аналитич. ф-лой и поэтому табулируется; табличные данные обеспечивают точность определения температуры до тысячной доли К.
В области Н. т. для целей практич. термометрии применяют гл. обр. термометры сопротивления (до 20 К - медный; в области водородных и гелиевых температур вплоть до 1 мК - угольные, сопротивление к-рых возрастает при понижении температуры). Для измерения температуры ниже 100 К применяют также термометры сопротивления из чистого германия.
Ниже 1 К газовым термометром пользоваться практически нельзя. Для определения термодинамич. температуры в этой области используют методы магнитной термометрии и ядерные методы. В основе ядерных методов измерения Н.т. лежит принцип квантовой статистич. физики, согласно к-рому равновесная заселённость дискретных уровней энергии системы зависит от температуры. В одном из таких методов измеряются интенсивности линий ядерного магнитного резонанса, определяемые разностью заселённостей уровней энергии ядер в магн. поле; в др. методе - зависящее от температуры отношение интенсивностей компонентов, на к-рые расщепляется линия резонансного гамма-излучения (см. Мёссбауэровская спектроскопия)во внутр. магн. поле ферромагнетика.
Аналогом термометрии по давлению насыщенных паров в области сверхнизких температур является измерение температуры в диапазоне 30 - 100 мК по осмотическому давлению 3Не в смеси 3Не - 4Не. Абсолютная точность измерений - ок. 2 мК при чувствительности осмотич. термометра ~ 0,01 мК.

Физика Н. т. Применение Н. т. сыграло важную роль в изучении конденсир. состояния вещества. Особенно много новых фактов и закономерностей было открыто при изучении свойств разл. веществ при гелиевых темп-pax. Это привело к выделению спец. раздела физики - физики Н.т. При понижении температуры в свойствах веществ начинают проявляться особенности, связанные с наличием взаимодействий, к-рые при обычных темп-pax вуалируются тепловым движением атомов.
Благодаря значит. подавлению теплового движения атомов при Н. т. удалось обнаружить большое число макроскопич. явлений, имеющих квантовую природу: существование гелия в жидком состоянии вплоть до абс. нуля температуры (0К), сверхтекучесть, сверхпроводимость и др. При Н. т. состояние твёрдого тела можно рассматривать как упорядоченное состояние, соответствующее ОК, но с учётом влияния "газа" элементарных возбуждений - квазичастиц. Введение разл. типов квазпчастиц (фононы, дырки, магноны и др.) позволяет описать многообразие свойств веществ при Н. т.
Охлаждение до сверхнизких температур применяется в ядерной физике, напр. для создания мишеней и источников с поляризов. ядрами при изучении анизотропии рассеяния элементарных частиц.

Технические применения Н. т. Одна из гл. областей применения Н. т. в технике - разделение газов. Произ-во кислорода и азота в больших кол-вах основано на сжижении воздуха с последующим разделением его в ректификац. колоннах. Н. т. используют для получения высокого вакуума методом адсорбции на активиров. угле или цеолите (адсорбц. насос) или непосредственно конденсацией паров на металлич. стенках сосуда с хладагентом (крионасос). Охлаждение до температур жидкого воздуха или азота находит применение в медицине (лечение мозговых опухолей, консервация живых тканей). Широко применяются Н. т. в электронике и радиотехнике для подавления аппаратурных шумов.

Литература по низким температурам (криогенным температурам)

  1. Физика низких температур, пер. с англ., М., 1959;
  2. Справочник по физико-техническим основам криогеники, под ред. М. П. Малкова, 3 изд., М., 1985;
  3. Линтон Э., Сверхпроводимость, пер. с англ., 2 изд., М., 1971;
  4. Роуз-Инс А., Техника низкотемпературного эксперимента, пер. с англ., М., 1966;
  5. Мендельсон К., На пути к абсолютному нулю, пер. с англ., М., 1971;
  6. Лоунасмаа О. В., Принципы и методы получения температур ниже 1 К, пер. с англ., М., 1977;
  7. Капица П. Л., Научные труды. Физика и техника низких температур, М., 1989.

И. П. Крылов

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

Знаете ли Вы, в чем ложность понятия "физический вакуум"?

Физический вакуум - понятие релятивистской квантовой физики, под ним там понимают низшее (основное) энергетическое состояние квантованного поля, обладающее нулевыми импульсом, моментом импульса и другими квантовыми числами. Физическим вакуумом релятивистские теоретики называют полностью лишённое вещества пространство, заполненное неизмеряемым, а значит, лишь воображаемым полем. Такое состояние по мнению релятивистов не является абсолютной пустотой, но пространством, заполненным некими фантомными (виртуальными) частицами. Релятивистская квантовая теория поля утверждает, что, в согласии с принципом неопределённости Гейзенберга, в физическом вакууме постоянно рождаются и исчезают виртуальные, то есть кажущиеся (кому кажущиеся?), частицы: происходят так называемые нулевые колебания полей. Виртуальные частицы физического вакуума, а следовательно, он сам, по определению не имеют системы отсчета, так как в противном случае нарушался бы принцип относительности Эйнштейна, на котором основывается теория относительности (то есть стала бы возможной абсолютная система измерения с отсчетом от частиц физического вакуума, что в свою очередь однозначно опровергло бы принцип относительности, на котором постороена СТО). Таким образом, физический вакуум и его частицы не есть элементы физического мира, но лишь элементы теории относительности, которые существуют не в реальном мире, но лишь в релятивистских формулах, нарушая при этом принцип причинности (возникают и исчезают беспричинно), принцип объективности (виртуальные частицы можно считать в зависимсоти от желания теоретика либо существующими, либо не существующими), принцип фактической измеримости (не наблюдаемы, не имеют своей ИСО).

Когда тот или иной физик использует понятие "физический вакуум", он либо не понимает абсурдности этого термина, либо лукавит, являясь скрытым или явным приверженцем релятивистской идеологии.

Понять абсурдность этого понятия легче всего обратившись к истокам его возникновения. Рождено оно было Полем Дираком в 1930-х, когда стало ясно, что отрицание эфира в чистом виде, как это делал великий математик, но посредственный физик Анри Пуанкаре, уже нельзя. Слишком много фактов противоречит этому.

Для защиты релятивизма Поль Дирак ввел афизическое и алогичное понятие отрицательной энергии, а затем и существование "моря" двух компенсирующих друг друга энергий в вакууме - положительной и отрицательной, а также "моря" компенсирующих друг друга частиц - виртуальных (то есть кажущихся) электронов и позитронов в вакууме.

Однако такая постановка является внутренне противоречивой (виртуальные частицы ненаблюдаемы и их по произволу можно считать в одном случае отсутствующими, а в другом - присутствующими) и противоречащей релятивизму (то есть отрицанию эфира, так как при наличии таких частиц в вакууме релятивизм уже просто невозможен). Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
Bourabai Research - Технологии XXI века Bourabai Research Institution