к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Решёточная теплоёмкость

Решёточная теплоёмкость - теплоёмкость твёрдого тела, обусловленная атомной подсистемой, в частности кристаллич. решёткой. Р. т. является частью теплоёмкости твёрдого тела. Термин «Р. т.» может относиться не только к идеальным кристаллам, но и к кристаллам с дефектами решётки или примесями, к некристаллич. твёрдым телам (аморфным веществам, стёклам).

Различие между Р. т. при пост, давлении (Ср)ц при пост. объёме (Су) мало:8009-40.jpg . При Т - ОК это является следствием теоремы Нернста (см. Третье начало термодинамики), а при произвольных Т обусловлено малостью тепловой энергии (kT)относительно энергии связи атомов в твёрдом теле. Величина и температурная зависимость Р. т. С определяются энергетич. спектром8009-41.jpg колебании атомной подсистемы (см. Колебания кристаллической решётки:)
8009-42.jpg

Здесь S - энтропия, F - Гельмгольца энергия. Величина dS/дТ вычисляется при пост. давлении либо при пост, объёме, в зависимости от того, какая из величин Ср или СV подлежит определению.

Спектр колебаний атомной подсистемы зависит от её хим. состава и структуры и для реальных твёрдых тел сложен. Теория Р. т. основана на упрощающих предположениях о виде колебат. спектра. При высоких Т, когда возбуждены все 3N степеней свободы твёрдого тела, содержащего N атомов, из теоремы о равнораспределении энергии следует, что на каждую колебат. степень свободы приходится энергия , и потому С = 3Nk. Этот результат соответствует эксперим. данным для простых кристаллич. решёток (элементы и простые соединения, см. Дюлонга и Пти закон ).Для сложных соединений предельное значение С = 3Nk с повышением Т обычно не достигается, т. к. раньше происходит их плавление или разложение.

При понижении температуры Р. т. убывает, благодаря «вымораживанию» колебаний с энергиями8009-43.jpg Простейшей моделью, описывающей этот процесс, является модель Эйнштейна, в к-рой всем степеням свободы твёрдого тела сопоставляются одномодовые гармонич. осцилляторы с частотой8009-44.jpg. В этом случае
8009-45.jpg

Величину8009-46.jpg называют Эйнштейна температурой.

В области низких Т играют роль лишь колебания с малыми энергиями8009-47.jpg , т. е. с малыми частотами8009-48.jpg . Это звуковые колебания, длина волны к-рых заметно превышает постоянную решётки а при условии8009-49.jpg, где и - скорость звука. Число длинноволновых звуковых колебаний в интервале частот dw в объёме V трёхмерного кристалла равно
8009-50.jpg

где8009-51.jpg -среднее по различным кристаллографич. направлениям, g - плотность распределения колебаний но частотам. С учётом (3) из (1) следует:
8009-52.jpg

Р. т., пропорциональная Т3, наблюдается при низких темп-pax для многих твёрдых тел (см. Девая закон теплоёмкости). Этот закон фактически начинает выполняться при8009-53.jpg для простых решёток и при значительно меньших Т для тел со сложной решёткой. Интерполяция между пределами низких и высоких температур в кристаллах даётся Дебая теорией твёрдого тела. Она основана на предположении, что частоты распределены по закону (3) на всём протяжении спектра, к-рый обрывается при нек-рой максимальной дебаевской частоте8009-54.jpg. При этом соотношение (1) даёт:
8009-55.jpg

где8009-56.jpg - Дебая температура, D(x)=8009-57.jpg функция Дебая (рис. 1). Критерием применяемости этой теории для Р. т. является соотношение Т и8009-58.jpg: Р. т. можно считать постоянной при8009-59.jpg и пропорциональной Т3 при8009-60.jpg . Ф-ла (5) передаёт ход С(Т)лишь для простых решёток; к телам с более сложной структурой она неприменима, т. к. их спектр колебаний сложен.
8009-61.jpg

Рис. 1. Зависимость решёточной теплоёмкости от температуры в модели Дебая.

В кристаллах «слоистого» или «цепочечного» типа (квазиодномерные соединения и квазидвумерные соединения)спектр звуковых колебаний характеризуется не одной, а неск.8010-1.jpg, различными по порядку величины. Закон Т3 для Р. т. имеет при этом место лишь при Т, малых по сравнению с наименьшей из дебаевских температур, в промежуточных же областях Т возникают др. законы. Если обозначить через8010-2.jpg отношение энергии связи между слоями к энергии связи между атомами в слоях, то закон Т3 для Р. т. будет иметь место лишь при8010-3.jpg , где8010-4.jpg - наибольшая из8010-5.jpg. В области8010-6.jpg имеют место зависимости:8010-7.jpg для слоистых и8010-8.jpg для цепочечных кристаллов. При8010-9.jpg имеют место зависимости8010-10.jpg и8010-11.jpg

Влияние дефектов. Величина и температурная зависимость Р. т. кристаллов зависят от наличия дефектов и примесей. К увеличению низкотемпературной Р. т. при8010-12.jpg могут привести резонансные квазилокальные колеоания с частотами8010-13.jpg, к-рые возникают благодаря введению тяжёлых примесей или дефектов. Локальные ВЧ-колебания8010-14.jpg слабо влияют на Р. т. Заметный вклад в низкотемпературную Р. т. могут давать также т. н. ориентац. дефекты (дипольные центры) и нецентральные ионы.

8010-15.jpg

Рис. 2. Зависимость С(Т) аморфного кварца (а = SiO2). Рост в зависимости С(Т) левее минимума обусловлен линейной зависимостью теплоёмкости от Т.

Решёточная теплоёмкость некристаллических веществ (аморфных или стеклообразных твёрдых тел, полимеров, ионных суперпроводников) при низких Т кардинально отличается от Р. т. кристаллов. При Т < 1 К Р. т. этих веществ существенно превышает Р. т. кристаллов и зависит от Т приблизительно линейно. При Т ~ 10 К в зависимости С(Т)появляется максимум, свидетельствующий об избыточной (по сравнению с дебаевской) теплоёмкости (рис. 2). Такое поведение и величина Р. т. слабо зависят от хим. состава и типа проводимости некристаллич. веществ, являясь в этом смысле универсальными. Так, зависимость8010-16.jpg наблюдается не только в диэлектрических и полупроводниковых стёклах ,но и в металлических стёклах. В последнем случае она экспериментально отделяется от электронной теплоёмкости по наблюдению ц сверхпрово-дящем состоянии, когда электронная теплоёмкость пренебрежимо мала.

Линейная зависимость от температуры8010-17.jpg объясняется моделью двухуровневых систем, отвечающих туннельным состояниям атомов в двухъямных потенциалах, существование к-рых связано с неупорядоченностью системы (см. Неупорядоченные системы ).Постулируется равномерное распределение энергий с плотностью8010-18.jpg. Это приводит к соотношению
8010-19.jpg

Предполагается, что верхняя граница спектра8010-20.jpg kT. Тепловое возбуждение двухуровневых систем происходит за время релаксации, величина к-рого экспоненциально зависит от параметров барьера в двухъямном потенциале. Разброс значений этих параметров в некристаллич. веществе приводит к появлению экспоненциально широкого спектра времен релаксации. В результате возникает логарифмически слабая зависимость измеряемой Р. т. от времени эксперимента.

Литература по решёточной теплоёмкости

  1. Киттель Ч., Введение в физику твердого тела, пер. с англ., М., 1978;
  2. Amorphous solids. Low-temperature properties, ed. by W. A. Phillips, B.- [a. o.], 1981.

В. Г. Карпов

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

Знаете ли Вы, в чем ложность понятия "физический вакуум"?

Физический вакуум - понятие релятивистской квантовой физики, под ним там понимают низшее (основное) энергетическое состояние квантованного поля, обладающее нулевыми импульсом, моментом импульса и другими квантовыми числами. Физическим вакуумом релятивистские теоретики называют полностью лишённое вещества пространство, заполненное неизмеряемым, а значит, лишь воображаемым полем. Такое состояние по мнению релятивистов не является абсолютной пустотой, но пространством, заполненным некими фантомными (виртуальными) частицами. Релятивистская квантовая теория поля утверждает, что, в согласии с принципом неопределённости Гейзенберга, в физическом вакууме постоянно рождаются и исчезают виртуальные, то есть кажущиеся (кому кажущиеся?), частицы: происходят так называемые нулевые колебания полей. Виртуальные частицы физического вакуума, а следовательно, он сам, по определению не имеют системы отсчета, так как в противном случае нарушался бы принцип относительности Эйнштейна, на котором основывается теория относительности (то есть стала бы возможной абсолютная система измерения с отсчетом от частиц физического вакуума, что в свою очередь однозначно опровергло бы принцип относительности, на котором постороена СТО). Таким образом, физический вакуум и его частицы не есть элементы физического мира, но лишь элементы теории относительности, которые существуют не в реальном мире, но лишь в релятивистских формулах, нарушая при этом принцип причинности (возникают и исчезают беспричинно), принцип объективности (виртуальные частицы можно считать в зависимсоти от желания теоретика либо существующими, либо не существующими), принцип фактической измеримости (не наблюдаемы, не имеют своей ИСО).

Когда тот или иной физик использует понятие "физический вакуум", он либо не понимает абсурдности этого термина, либо лукавит, являясь скрытым или явным приверженцем релятивистской идеологии.

Понять абсурдность этого понятия легче всего обратившись к истокам его возникновения. Рождено оно было Полем Дираком в 1930-х, когда стало ясно, что отрицание эфира в чистом виде, как это делал великий математик, но посредственный физик Анри Пуанкаре, уже нельзя. Слишком много фактов противоречит этому.

Для защиты релятивизма Поль Дирак ввел афизическое и алогичное понятие отрицательной энергии, а затем и существование "моря" двух компенсирующих друг друга энергий в вакууме - положительной и отрицательной, а также "моря" компенсирующих друг друга частиц - виртуальных (то есть кажущихся) электронов и позитронов в вакууме.

Однако такая постановка является внутренне противоречивой (виртуальные частицы ненаблюдаемы и их по произволу можно считать в одном случае отсутствующими, а в другом - присутствующими) и противоречащей релятивизму (то есть отрицанию эфира, так как при наличии таких частиц в вакууме релятивизм уже просто невозможен). Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
Bourabai Research - Технологии XXI века Bourabai Research Institution