к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Ионизационные волны

Ионизационные волны - области с повышенной концентрацией заряж. частиц, обычно отделённые от слабо ионизованной или неионизованной среды узкой поверхностью раздела - фронтом волны. Фронт Ионизационные волны представляет собой переходную область, в пределах к-рой происходит резкий скачок концентрации заряж. частиц. Структура волны определяется процессами ионизации и переноса частиц и энергии. Ионизационные волны могут быть как единичными, так и периодическими (т. н. страты), стационарными и движущимися. Ионизационные волны наблюдаются в газе, жидкости и твёрдом теле. При электрич. пробое жидкости обычно происходит сначала превращение её в газ, а затем по нему распространяется волна ионизации. Характерная особенность И. в. заключается в том, что их возникновение и распространение связаны не с перемещением вещества (как это имеет место в упругих волнах), а с перемещением области интенсивной ионизации. Так, напр., локальное возмущение плотности ионов или электронов в плазме ведёт к возникновению пространственного заряда и появлению локального электрич. поля, меняющего, в свою очередь, ср. энергию электронов. В связи с этим меняется скорость ионизации и, соответственно, концентрация заряж. частиц. Вся эта цепь процессов ведёт к распространению возмущения, причём возможно чередование положит, и отрицат. отклонений объёмной плотности электронов и др. параметров плазмы от однородного состояния. И. в. по характеру физ. явлений в переходной области и механизму перемещения во ми. случаях близки к волнам горения и детонации в газовой динамике и отличаются от них механизмом подвода необходимой для ионизации энергии. В волнах горения и детонации источником энергии является энергия хим. реакции, идущая в основном на нагрев и разгон (в волне детонации) газа. В И. в. энергия подводится извне и затем тратится на нагрев и ионизацию газа, а разгона среды обычно не происходит. Способы подвода энергии очень разнообразны: напр, непосредственное ускорение электронов внеш. электрич. полем до энергий, достаточных для ударной ионизации, лазерное или др. ионизирующее излучение и т. п. Различны и механизмы перемещения фронта ионизации: дрейф в электрич. поле, теплопроводность (электронная или турбулентная), диффузия (электронная, амбиполярная, турбулентная), перенос излучения и т. п. В зависимости от рода газов, внеш. электрич. и магн. полей и границ системы весьма разнообразны кинетика процессов ионизации и рекомбинации и характер переноса. Отсюда вытекает и разнообразие типов ионизационных волн, их свойств, скоростей и направлений их движения. Существуют И. в. с фазовой скоростью, направленной противоположно групповой (т. н. обратные волны); прямые И. в. с фазовой скоростью, большей или меньшей, чем групповая; Ионизационные волны, направленные в сторону электрич. поля и против него. Периодические ионизационные волны (страты) наблюдаются в плазмах разнообразного состава при давлениях от 10-2 мм рт. ст. до десятков атмосфер. Скорости распространения И. в. также могут меняться в широком диапазоне от нулевой (стоячие страты) до скоростей, близких к скорости света. Так, напр., распространение И. в., в к-рых электрич. поле направлено по нормали к плоской поверхности фронта ионизации (продольное электрич. поле), а электроны поступают в область перед фронтом за счёт диффузии, происходит со скоростью vф, определяемой в простейшем случае соотношением:

vф=(1+kTe/Eи)mеE0.

Здесь Те - темп-pa электронов перед фронтом И. в., me - их подвижность, Eи - энергия ионизации, Е0 - характерное значение напряжённости электрич. поля, определяемое структурой волны. Скорость движения И. в. по холодному газу в поперечном электрич. поле E^ оценивается из выражения:10-13.jpg Здесь Те^) - темп-pa электронов за фронтом волны, определяемая из баланса энергии электронов в приложенном поле Е^, mв - масса электрона. Наряду с волнами ионизации, движущимися по холодному газу, существуют т. н. волны вторичного пробоя, распространяющиеся по каналу слабоионизов. газа. Такие волны наблюдаются в возвратном ударе молнии и в экспериментах по наносекундному пробою газа в длинных трубках. Перемещение волн вторичного пробоя связано с перераспределением электрич. поля, обеспечивающего ионизацию. Во фронте ионизации таких волн концентрация заряж. частиц может возрастать на порядки. Скорость волн вторичного пробоя может быть близка к скорости света и оценивается по ф-ле: vф=Kamej, где a - первый коэф. Таунсенда (см. Электрические разряды в газах ),j - электрич. потенциал, К - численный коэф., определяемый тонкой структурой волны. Обычно скорость волн вторичного пробоя обратно пропорц. давлению. Существуют И. в., движущиеся в электрич. поле по поверхности диэлектрика (скользящий разряд). На характер перемещения И. в. может влиять магн. поле, меняя коэффициенты переноса. Так, напр., в замагнич. неравновесной плазме инертных газов с добавкой (присадкой) щелочных металлов при развитии иони-зац. неустойчивости возникают т. н. магн. страты, природа к-рых связана с анизотропией флуктуации джоулева тепловыделения, переноса тепла и процессов ионизации. В такой плазме в магн. поле наряду с ионизационными волнами, движущимися по холодному газу, могут существовать также волны ионизации и рекомбинации присадки, перемещающиеся по частично ионизованному газу, по к-рому протекает электрич. ток. Для таких волн из-за Холла эффекта ток может течь не параллельно фронту волны, и суммарная скорость перемещения И. в. в этом случае вызывается как теплопроводностью (диффузией), так и конвективными механизмами. Если бы конвективная скорость носителей была постоянной перед фронтом и за ним, то скорость движения И. в. складывалась бы из скорости движения фронта и конвективной скорости носителей. Но конвективные скорости за фронтом ионизации и перед ним различны, т. к. нелинейно зависят от концентрации носителей. Если под действием диффуз. механизма волна всегда стремится распространяться в сторону более низкой концентрации, то при наличии конвекции носителей результирующая скорость может быть направлена как в сторону увеличения концентрации (тогда наблюдается волна рекомбинации присадки), так и в сторону понижения концентрации (волна ионизации присадки).

Литература по ионизационным волнам

  1. Недоспасов А. В., Страты, "УФН", 1968, т. 94, с. 439;
  2. Пекарек Л., Ионизационные волны (страты) в разрядной плазме, там же, с. 463;
  3. Недоспасов А. В., Xаит В. Д., Колебания и неустойчивости низкотемпературной плазмы, М., 1979;
  4. Ланда П. С., Мискинова Н. А., Пономарев Ю. В., Ионизационные волны в низкотемпературной плазме, "УФН", 1980, т. 132, с. 601;
  5. Руткевич И. М., Синкевич О. А., Волны и неустойчивости в низкотемпературной плазме, в кн.: Итоги науки и техники, сер. "Механика жидкости и газа", т. 14, М., 1981.

О. А. Синкевич

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

Знаете ли Вы, как разрешается парадокс Ольберса?
(Фотометрический парадокс, парадокс Ольберса - это один из парадоксов космологии, заключающийся в том, что во Вселенной, равномерно заполненной звёздами, яркость неба (в том числе ночного) должна быть примерно равна яркости солнечного диска. Это должно иметь место потому, что по любому направлению неба луч зрения рано или поздно упрется в поверхность звезды.
Иными словами парадос Ольберса заключается в том, что если Вселенная бесконечна, то черного неба мы не увидим, так как излучение дальних звезд будет суммироваться с излучением ближних, и небо должно иметь среднюю температуру фотосфер звезд. При поглощении света межзвездным веществом, оно будет разогреваться до температуры звездных фотосфер и излучать также ярко, как звезды. Однако в дело вступает явление "усталости света", открытое Эдвином Хабблом, который показал, что чем дальше от нас расположена галактика, тем больше становится красным свет ее излучения, то есть фотоны как бы "устают", отдают свою энергию межзвездной среде. На очень больших расстояниях галактики видны только в радиодиапазоне, так как их свет вовсе потерял энергию идя через бескрайние просторы Вселенной. Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
Bourabai Research - Технологии XXI века Bourabai Research Institution