к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Радиоспектроскопия

Радиоспектроскопия - раздел физики, в к-ром изучаются спектры поглощения разл. веществ в диапазоне радиоволн (на частотах эл--магн. поля от 103 до 6·1011 Гц). В более широком смысле к радиоспектроскопии относят также исследования резонансной дисперсии, релаксации, нелинейных явлений, индуциров. испускания и др. явлений резонансного взаимодействия эл--магн. и аку-стич. полей указанного диапазона с квантовыми системами.

Резонансное поглощение в диапазоне радиоволн обусловлено индуциров. переходами между уровнями энергии4024-14.jpgатомов, молекул, атомных ядер и пр., удовлетворяющими условию

4024-15.jpg

где v - частота радиоволны. Такие интервалы энергии возникают, напр., при взаимодействии магн. моментов электронов и ядер с внеш. магн. полем [см. Зе-емана эффект, Электронный парамагнитный резонанс (ЭПР), Ядерный магнитный резонанс (ЯМР)]; элект-рич. квадрупольных моментов ядер с градиентом внут-рикристаллич. поля [см. Ядерный квадрупольный резонанс (ЯКР)]; при взаимодействии магн. моментов электронов и ядер (сверхтонкое расщепление уровней энергии); во вращательных спектрах молекул в газах (см. Микроволновая спектроскопия); при туннелирова-нпи атомов, ионов и молекулярных фрагментов в кристаллах и стёклах; при коллективном взаимодействии электронов в магнитоупорядоченных веществах (см. Ферромагнитный резонанс, Антиферромагнитный ре-зонанс); при движении электронов проводимости в магн. поле (см. Циклотронный резонанс)и пр. Интервалы 4024-16.jpg между уровнями энергии, изучаемые в радиоспектроскопии, обычно соответствуют диапазону СВЧ (109-3·1011 Гц), а в случае ЯМР и ЯКР - диапазону ВЧ (103-3·108 Гц). Столь малые интервалы, как правило, не удаётся разрешить в оптич. и ИК-спектрах, их можно зарегистрировать только методами радиоспектроскопии.

По сравнению с оптич. спектроскопией н инфракрасной спектроскопией радиоспектроскопия имеет ряд особенностей. В радиоспектроскопии практически отсутствует аппаратурное уширение спектральных линий, поскольку в качестве источника радиоволн используют когерентные генераторы, а частоту v можно измерить с высокой точностью. Отсутствует и типичное для оптич. диапазона радиационное уширение, т. к. вероятность спонтанного испускания, пропорциональная v3, в диапазоне радиоволны пренебрежимо мала. Из-за малой энергии hv на единицу мощности приходится большое число квантов, что практически устраняет квантовомеханич. неопределённость фазы радиочастотного поля, к-рое можно описывать классически. Всё это позволяет получать информацию о веществе из точных измерений формы резонансных линий, к-рая определяется в радиоспектроскопии взаимодействием микрочастиц друг с другом, с тепловыми колебаниями матрицы и др. полями, а также их движением (в частности, Доплера эффектом в газах). Ширина линий в радиоспектроскопии меняется в очень широких пределах: от ~1 Гц для ЯМР в жидкостях до ~1010 Гц для ЭПР в концентриров. парамагнетиках, ферромагн. резонанса, параэлектрического резонанса ионов в твёрдых телах.

С др. стороны, из-за малой величины4024-17.jpgуменьшается чувствительность методов радиоспектроскопии. Интенсивность регистрируемых спектров определяется преобладанием поглощения эл--магн. энергии над её индуциров. испусканием, т. е. разностью населённостей Nj - Ni уровней энергии, между к-рыми происходят переходы. В условиях теплового равновесия при температуре Т эти населённости подчиняются Больцмана распределению, откуда для невырожденных уровней

4024-18.jpg

В оптич. спектроскопии, как правило, 4024-19.jpg(заселён практически только ниж. уровень); в радиоспектроскопии, напротив, вплоть до Т ~ 1 К выполняется неравенство 4024-20.jpg поэтому величина DN мала и обратно пропорциональна температуре.

Для получения спектров исследуемое вещество помещают в объёмный резонатор, волновод или ВЧ-кон-тур и в зависимости от типа резонансных переходов (магн. или электрич.) подвергают действию соответствующей компоненты эл--магн. поля. Магн. дипольные переходы характерны для всех видов магнитного резонанса (ЭПР, ЯМР, ЯКР и т. д.), электрич. переходы - для микроволновых спектров газов, параэлект-рич. резонанса и др. Эксперим. методы регистрации спектров в радиоспектроскопии можно разделить на стационарные, импульсные и косвенные.

В стационарных методах образец непрерывно облучают достаточно слабым (не вызывающим когерентных эффектов) эл--магн. полем, частоту к-рого медленно изменяют. При выполнении условия (1) часть энергии поля поглощается веществом, что регистрируют по соответствующему уменьшению амплитуды эл--магн. колебаний. Зависимость коэф. поглощения от частоты v и представляет собой стационарный спектр поглощения. Вместо изменения частоты в радиоспектроскопии часто применяют эквивалентное изменение внеш. магн. или элект-рич. поля, влияющего на условие резонанса (1).

Мощность P эл--магн. поля, поглощаемая веществом на частоте v, равна

4024-21.jpg

где DN определяется ф-лой (2), g(v) - плотность состояний на частоте перехода, определяющая форму и ширину линии поглощения, а величина Wij пропорциональна недиагональному матричному элементу оператора магн. (электрич.) дипольного момента частицы и амплитуде соответствующей компоненты радиочастотного поля.

Стационарное поглощение веществом мощности P предполагает дальнейшую передачу энергии термостату, роль к-рого обычно выполняют степени свободы, связанные с тепловым движением (колебания кристал-лич. решётки, хаотич. движение молекул жидкости, кинетич. энергия электронов проводимости и пр.). Указанный процесс называют продольной релаксацией и характеризуют постоянной времени т1. При росте мощности эл--магн. поля до значений, обеспечивающих условие 4024-22.jpg продольная релаксация уже не успевает отводить в термостат поступающую энергию, происходит насыщение резонансного поглощения (DN : 0). Насыщение используют в радиоспектроскопии для измерения т1 и получения информации о движении частиц, спин-фононных взаимодействиях и пр.

Импульсные методы получили распространение в ЯМР, ЯКР и отчасти в ЭПР. При этом вещество подвергается действию короткого мощного радиочастотного импульса, переводящего систему частиц в когерентное нестационарное квантовое состояние, являющееся суперпозицией состояний4024-23.jpg иВозникающее при этом движение ансамбля

частиц4024-24.jpg (в случае магн. резонанса - когерентная прецессия спинов вокруг постоянного магн. поля) генерирует в датчике сигнал свободной индукции F(t). Взаимодействие частиц друг с другом и с разл. полями приводит к потере когерентности и затуханию F(t)с характерным временем поперечной релак-сации т2. функция F(t)содержит полную информацию о спектре поглощения и связана с ним преобразованием Фурье. Применение двух и более последоват. импульсов позволяет частично компенсировать потерю когерентности (см. Спиновое эхо ),что повышает чувствительность и разрешающую способность метода.

В косвенных методах резонансное поглощение радиочастотного поля регистрируют по изменению (обычно небольшому) нек-рых макроскопич. характеристик вещества. Ими могут быть, напр., интенсивность и поляризация оптич. люминесценции (оптич. детектирование), анизотропия g- и b-радиоакт. излучения, траектории молекулярных и атомных пучков в неоднородном внеш. поле (см. также Раби метод), темп-pa образца, его способность к нек-рым хим. реакциям и пр. К косвенным методам можно отнести также двойные резонансы, в к-рых поглощение квантов одной частоты регистрируют по отклику на другой частоте. Для расширения возможностей радиоспектроскопии используют многоквантовые и параметрич. эффекты, акустич. методы (см., напр., Акустический парамагнитный резонанс ).В ВЧ-области диапазона радиоволн (частота выше 1011 Гц) радиоспектроскопии по своим методам и объектам исследования приближается к ИК-спектроскопии (см. Субмиллиметровая спектроскопия).

Радиоспектроскопию применяют в физике, химии, биологии, технике для получения детальной информации о внутр. структуре и атомно-молекулярной динамике твёрдых тел, жидкостей и газов, определения структуры и конформации молекул, измерения магн. и электрич. моментов микрочастиц, изучения их взаимодействий друг с другом и с разл. внеш. и внутр. полями. Методы радиоспектроскопии используют также для качеств. и количеств. хим. анализа, контроля хим. и биохим. реакций, определения структуры примесей и дефектов, измерения магн. полей, температуры, давления, для неразрушающего контроля материалов и изделий. В радиоспектроскопии было впервые получено индуциров. испускание, что привело к созданию квантовых генераторов и усилителей СВЧ-диапазона - квантовых стандартов частоты и чувствительных приёмников, а затем и лазеров (см. также Квантовая электроника). Один из видов двойного резонанса - динамич. поляризацию ядер (см. Ориентированные ядра, Оверхаузера эффект)- применяют при создании поляризованных ядерных мишеней. Радиоспектроскопию используют также в медицине для получения диа-гностич. изображений внутр. органов (см. Томография).

Литература по радиоспектроскопии

  1. Таунс Ч., Шавлов А., Радиоспектроскопия, пер. с англ., М., 1959;
  2. Инграм Д., Спектроскопия на высоких и сверхвысоких частотах, пер. с англ., М., 1959;
  3. Альтшулер С. А., Козырев Б. М., Электронный парамагнитный резонанс соединений элементов промежуточных групп, 2 изд., М., 1972;
  4. Абрагам А., Ядерный магнетизм, пер. с англ., М., 1963;
  5. Сликтер Ч., Основы теории магнитного резонанса, пер. с англ., 2 изд., М., 1981;
  6. Лундин А. Г.,Федин Э. И., Ядерный магнитный резонанс. Основы и применения, Новосиб., 1980;
  7. Физические основы квантовой радиофизики, Л., 1985.

В. А. Ацаркин.

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

Знаете ли Вы, что любой разумный человек скажет, что не может быть улыбки без кота и дыма без огня, что-то там, в космосе, должно быть, теплое, излучающее ЭМ-волны, соответствующее температуре 2.7ºК. Действительно, наблюдаемое космическое микроволновое излучение (CMB) есть тепловое излучение частиц эфира, имеющих температуру 2.7ºK. Еще в начале ХХ века великие химики и физики Д. И. Менделеев и Вальтер Нернст предсказали, что такое излучение (температура) должно обнаруживаться в космосе. В 1933 году проф. Эрих Регенер из Штуттгарта с помощью стратосферных зондов измерил эту температуру. Его измерения дали 2.8ºK - практически точное современное значение. Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
Bourabai Research - Технологии XXI века Bourabai Research Institution